问题描述:

  给定无向连通图 G 和 m 种不同的颜色。用这些颜色为图 G 和各顶点着色,每个顶点着一种颜色。是否有一种着色法使得图 G 中每条边的两个顶点着不同的颜色。这个问题是图的 m 可着色判定问题。若一个图最少需要 m 种颜色才能使图中的每条边连接的两个顶点着不同的颜色,则称这个数 m 为该图的色数。求一个图的色数 m 的问题称为图的 m 可着色优化问题。

  四色问题是m图着色问题的一个特例,根据四色原理,证明平面或球面上的任何地图的所有区域都至多可用四种、颜色来着色,并使任何两个有一段公共边界的相邻区域没有相同的颜色。这个问题可将平面图转换成对平面点的着色判定问题,将地图的每个区域变成一个结点,若两个区域相邻,则相应的结点用一条边连接起来。如将五个区域换成用点的方式表示,如下图:

即用矩阵的表示如下:

 用回溯法解空间,先假设三种颜色和三个点,解空间如下:


package com.calculateprogram;
/**
* 图的M上着色问题
* @author 郭庆兴
*
*/
public class NColoring {
static int n, //图的顶点数
m; //可用的颜色数
static boolean [][]a; //图的邻接矩阵,表示点与点之间是否的连接
static int []x; //当前解
static long sum; //当前找到的可着色的方案数 public static long NColoring(int nColor){
m=nColor;
sum=0;
backtrace(1);
return sum;
} private static void backtrace(int i) {
if (i>n) {
//当最后一个点被着色后,此时i大于n,即所有点已染色完成
sum++;
//打印出此种方案的结果
System.out.print("第"+sum+"种方案(点数从1依次到5涂上颜色):");
for (int j = 1; j <= n; j++)
System.out.print(x[j]+" ");
System.out.println();
}
else
//开始给一个点添加颜色,同时判断其可行性,
for (int j = 1; j <= m ; j++) {
//给改点图上m号颜色
x[i]=j;
//若此种颜色可行,即执行进行深层次的着色
if (ok(x[i]))
backtrace(i+1);
//将该点恢复到原来的状态
x[i]=0;
} } private static boolean ok(int i) {
// 检查颜色的可行性
for (int j = 1; j <= n; j++)
if (a[i][j] && (x[j]==x[i]) )
return false; return true; } public static void main(String[] args) {
n=5;
m=4;
x=new int[6];
a=new boolean[6][6];
for (int i = 0; i < a.length; i++)
for (int t = 0; t < a.length; t++)
a[i][t]=false;
a[1][2]=true;a[1][3]=true;a[1][4]=true;
a[2][1]=true;a[2][3]=true;a[2][5]=true;a[2][4]=true;
a[3][1]=true;a[3][2]=true;a[3][4]=true;
a[4][1]=true;a[4][2]=true;a[4][3]=true;a[4][5]=true;
a[5][2]=true;a[5][4]=true;
backtrace(1);
}
}

  程序结果如图:

  

图的M着色问题的更多相关文章

  1. 【回溯】图的m着色问题

    问题 C: [回溯]图的m着色问题 时间限制: 1 Sec  内存限制: 128 MB提交: 1  解决: 1[提交][状态][讨论版] 题目描述 给定无向连通图G=(V, E)和m种不同的颜色,用这 ...

  2. 编程之美:1.9高效率安排见面会 图的m着色问题 回溯法

    原书问题,可以转换为图的m着色问题 ,下面该问题的代码 这里有参考ppt与code,免积分载 http://download.csdn.net/detail/u011467621/6341195 // ...

  3. [题解]图的m着色问题

    图的m着色问题(color) [题目描述] 给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色.如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的 ...

  4. 图的M 着色问题

    题目描述给定无向连通图G 和M 种不同的颜色,用这些颜色为图G 的各顶点着色,每个顶点着一种颜色.如果有一种着色法使G 中每条边的2 个顶点着不同的颜色,则称这个图是M 可着色的.图的M 着色问题是对 ...

  5. P2819 图的m着色问题

    题目背景 给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色.如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的.图的m着色问题是对于给定图G和m ...

  6. 图m的着色问题(搜索)

    图的m着色问题 [问题描述]        给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色.如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的 ...

  7. 图的m着色问题 (回溯搜索)

    图的m着色问题 [问题描述]        给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色.如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的 ...

  8. 算法java实现--回溯法--图的m着色问题

    (转自:http://blog.csdn.net/lican19911221/article/details/26264471) 图的m着色问题的Java实现(回溯法) 具体问题描述以及C/C++实现 ...

  9. 洛谷——P2819 图的m着色问题

    P2819 图的m着色问题 题目背景 给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色.如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的.图的 ...

  10. P2819 图的m着色问题 洛谷

    https://www.luogu.org/problem/show?pid=2819 题目背景 给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色.如果有一种着色法使 ...

随机推荐

  1. 解决 eclipse buildpath的jar包不能复制到tomcat lib下的问题

    环境: Eclipse 版本 Mars. 问题描述: Eclipse 开发的JavaWeb项目,通过buildpath的引入的jar包无法发布到tomcat对应应用的Lib 下. 解决办法: 1. 手 ...

  2. struts2 之 Action的创建方式

    总结:struts2是一个轻量级框架,提供了无侵入性的实现方式,struts2也提供了接口和类来实现action.通过实现接口或者继承类来实现action可以实现struts2提供的相关功能, 1. ...

  3. android参数传递的几种方法

    Intent Intent i=new Intent(当前Activity.this,目标Activity.class); 1.传单值 传入: i. i.putExtra("名称" ...

  4. Python的内置函数open()的注意事项

    用法 : open("file_address","open_mode")例子 : f = open("D:\PycharmProjects\log. ...

  5. js中的事件委托详解

    概述: 那什么叫事件委托呢?它还有一个名字叫事件代理,JavaScript高级程序设计上讲:事件委托就是利用事件冒泡,只指定一个事件处理程序,就可以管理某一类型的所有事件.那这是什么意思呢?网上的各位 ...

  6. perf学习-linux自带性能分析工具

    目前在做性能分析的事情,之前没怎么接触perf,找了几篇文章梳理了一下,按照问题的形式记录在这里. 方便自己查看.   什么是perf? linux性能调优工具,32内核以上自带的工具,软件性能分析. ...

  7. shell 分割字符串存至数组

    shell 分割字符串存至数组 shell编程中,经常需要将由特定分割符分割的字符串分割成数组,多数情况下我们首先会想到使用awk但是实际上用shell自带的分割数组功能会更方便.假如a=”one,t ...

  8. 蓝桥杯-无穷分数-java

    /* (程序头部注释开始) * 程序的版权和版本声明部分 * Copyright (c) 2016, 广州科技贸易职业学院信息工程系学生 * All rights reserved. * 文件名称: ...

  9. 蓝桥杯-第39级台阶-java

    /* (程序头部注释开始) * 程序的版权和版本声明部分 * Copyright (c) 2016, 广州科技贸易职业学院信息工程系学生 * All rights reserved. * 文件名称: ...

  10. Xmind 体验分享

    Xmind 8 体验 初识思维脑图 这两天在学习使用思维脑图(xmind是其中一款软件)ing,在体验了一把思维脑图的使用后,深深感受到了脑洞大开的魔力. 从昨晚开始研究使用,到今天晚上截止,自己试着 ...