Highway Networks Pytorch
导读
本文讨论了深层神经网络训练困难的原因以及如何使用Highway Networks去解决深层神经网络训练的困难,并且在pytorch上实现了Highway Networks。
一 、Highway Networks 与 Deep Networks 的关系
深层神经网络相比于浅层神经网络具有更好的效果,在很多方面都已经取得了很好的效果,特别是在图像处理方面已经取得了很大的突破,然而,伴随着深度的增加,深层神经网络存在的问题也就越大,像大家所熟知的梯度消失问题,这也就造成了训练深层神经网络困难的难题。2015年由Rupesh Kumar Srivastava等人受到LSTM门机制的启发提出的网络结构(Highway Networks)很好的解决了训练深层神经网络的难题,Highway Networks 允许信息高速无阻碍的通过深层神经网络的各层,这样有效的减缓了梯度的问题,使深层神经网络不在仅仅具有浅层神经网络的效果。
二、Deep Networks 梯度消失/爆炸(vanishing and exploding gradient)问题
我们先来看一下简单的深层神经网络(仅仅几个隐层)
先把各个层的公式写出来
我们对W1求导:
W = W - lr * g(t)
以上公式仅仅是四个隐层的情况,当隐层的数量达到数十层甚至是数百层的情况下,一层一层的反向传播回去,当权值 < 1的时候,反向传播到某一层之后权值近乎不变,相当于输入x的映射,例如,g(t) =〖0.9〗^100已经是很小很小了,这就造成了只有前面几层能够正常的反向传播,后面的那些隐层仅仅相当于输入x的权重的映射,权重不进行更新。反过来,当权值 > 1的时候,会造成梯度爆炸,同样是仅仅前面的几层能更改正常学习,后面的隐层会变得很大。
三、Highway Networks Formula
Notation
(.) 操作代表的是矩阵按位相乘
sigmoid函数:
Highway Networks formula
对于我们普通的神经网络,用非线性激活函数H将输入的x转换成y,公式1忽略了bias。但是,H不仅仅局限于激活函数,也采用其他的形式,像convolutional和recurrent。
对于Highway Networks神经网络,增加了两个非线性转换层,一个是 T(transform gate) 和一个是 C(carry gate),通俗来讲,T表示输入信息经过convolutional或者是recurrent的信息被转换的部分,C表示的是原始输入信息x保留的部分 ,其中 T=sigmoid(wx + b)
为了计算方便,这里定义了 C = 1 - T
需要注意的是x,y, H, T的维度必须一致,要想保证其维度一致,可以采用
sub-sampling
或者zero-padding
策略,也可以使用普通的线性层改变维度,使其一致。几个公式相比,公式3要比公式1灵活的多,可以考虑一下特殊的情况,T= 0的时候,y = x,原始输入信息全部保留,不做任何的改变,T = 1的时候,Y = H,原始信息全部转换,不在保留原始信息,仅仅相当于一个普通的神经网络。
四、Highway BiLSTM Networks
Highway BiLSTM Networks Structure Diagram
下图是 Highway BiLSTM Networks 结构图:
input:代表输入的词向量
B:在本任务代表bidirection lstm,代表公式(2)中的 H
T:代表公式(2)中的 T,是Highway Networks中的transform gate
C:代表公式(2)中的 C,是Highway Networks中的carry gate
Layer = n,代表Highway Networks中的第n层
Highway:框出来的代表一层Highway Networks
在这个结构图中,Highway Networks第 n - 1 层的输出作为第n层的输入
Highway BiLSTM Networks Demo
pytorch搭建神经网络一般需要继承nn.Module
这个类,然后实现里面的forward()
函数,搭建Highway BiLSTM Networks写了两个类,并使用nn.ModuleList
将两个类联系起来:class HBiLSTM(nn.Module):
def __init__(self, args):
super(HBiLSTM, self).__init__()
......
def forward(self, x):
# 实现Highway BiLSTM Networks的公式
......class HBiLSTM_model(nn.Module):
def __init__(self, args):
super(HBiLSTM_model, self).__init__()
......
# args.layer_num_highway 代表Highway BiLSTM Networks有几层
self.highway = nn.ModuleList([HBiLSTM(args) for _ in range(args.layer_num_highway)])
......
def forward(self, x):
......
# 调用HBiLSTM类的forward()函数
for current_layer in self.highway:
x, self.hidden = current_layer(x, self.hidden)在
HBiLSTM
类的forward()
函数里面我们实现Highway BiLSTM Networks
的的公式
首先我们先来计算H,上文已经说过,H可以是卷积或者是LSTM,在这里,normal_fc
就是我们需要的Hx, hidden = self.bilstm(x, hidden)
# torch.transpose是转置操作
normal_fc = torch.transpose(x, 0, 1)上文提及,x,y,H,T的维度必须保持一致,并且提供了两种策略,这里我们使用一个普通的
Linear
去转换维度source_x = source_x.contiguous()
information_source = source_x.view(source_x.size(0) * source_x.size(1), source_x.size(2))
information_source = self.gate_layer(information_source)
information_source = information_source.view(source_x.size(0), source_x.size(1), information_source.size(1))也可以采用
zero-padding
的策略保证维度一致# you also can choose the strategy that zero-padding
zeros = torch.zeros(source_x.size(0), source_x.size(1), carry_layer.size(2) - source_x.size(2))
source_x = Variable(torch.cat((zeros, source_x.data), 2))维度一致之后我们就可以根据我们的公式来写代码了:
# transformation gate layer in the formula is T
transformation_layer = F.sigmoid(information_source)
# carry gate layer in the formula is C
carry_layer = 1 - transformation_layer
# formula Y = H * T + x * C
allow_transformation = torch.mul(normal_fc, transformation_layer)
allow_carry = torch.mul(information_source, carry_layer)
information_flow = torch.add(allow_transformation, allow_carry)最后的
information_flow
就是我们的输出,但是,还需要经过转换维度保证维度一致。
更多的请参考Github: Highway Networks implement in pytorch
五、Highway BiLSTM Networks 实验结果
本次实验任务是使用Highway BiLSTM Networks 完成情感分类任务(一句话的态度分成积极或者是消极),数据来源于Twitter情感分类数据集,以下是数据集中的各个标签的句子个数:
下图是本次实验任务在2-class数据集中的测试结果。图中1-300在Highway BiLSTM Networks中表示Layer = 1,BiLSTM 隐层的维度是300维。
实验结果:从图中可以看出,简单的多层双向LSTM并没有带来情感分析性能的提升,尤其是是到了10层之后,效果有不如随机的猜测。当用上Highway Networks之后,虽然性能也在逐步的下降,但是下降的幅度有了明显的改善。
References
Highway Networks Pytorch的更多相关文章
- 基于pytorch实现HighWay Networks之Highway Networks详解
(一)简述---承接上文---基于pytorch实现HighWay Networks之Train Deep Networks 上文已经介绍过Highway Netwotrks提出的目的就是解决深层神经 ...
- 基于pytorch实现HighWay Networks之Train Deep Networks
(一)Highway Networks 与 Deep Networks 的关系 理论实践表明神经网络的深度是至关重要的,深层神经网络在很多方面都已经取得了很好的效果,例如,在1000-class Im ...
- Highway Networks
一 .Highway Networks 与 Deep Networks 的关系 深层神经网络相比于浅层神经网络具有更好的效果,在很多方面都已经取得了很好的效果,特别是在图像处理方面已经取得了很大的突破 ...
- Highway Networks(高速路神经网络)
Rupesh Kumar Srivastava (邮箱:RUPESH@IDSIA.CH)Klaus Greff (邮箱:KLAUS@IDSIA.CH)J¨ urgen Schmidhuber (邮箱: ...
- Paper | Highway Networks
目录 1. 网络结构 2. 分析 解决的问题:在当时,人们认为 提高深度 是 提高精度 的法宝.但是网络训练也变得很困难.本文旨在解决深度网络训练难的问题,本质是解决梯度问题. 提出的网络:本文提出的 ...
- 【论文笔记】Training Very Deep Networks - Highway Networks
目标: 怎么训练很深的神经网络 然而过深的神经网络会造成各种问题,梯度消失之类的,导致很难训练 作者利用了类似LSTM的方法,通过增加gate来控制transform前和transform后的数据的比 ...
- (转)Awesome PyTorch List
Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Aw ...
- DenseNet算法详解——思路就是highway,DneseNet在训练时十分消耗内存
论文笔记:Densely Connected Convolutional Networks(DenseNet模型详解) 2017年09月28日 11:58:49 阅读数:1814 [ 转载自http: ...
- Residual Networks <2015 ICCV, ImageNet 图像分类Top1>
本文介绍一下2015 ImageNet中分类任务的冠军——MSRA何凯明团队的Residual Networks.实际上,MSRA是今年Imagenet的大赢家,不单在分类任务,MSRA还用resid ...
随机推荐
- 利用JavaScript来切换样式表
切换样式表 html页 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http:/ ...
- Android studio一些常见技巧(不断更新)
一.Android studio取消默认每次打开时打开最后一个项目 二.as添加jar包 新建一个libs目录,在java下 进行手动gragle同步或者如下图 三.代码边上的小图标 1.布局文件中存 ...
- 关于jsp页面转换成excel格式下载遇到问题及解决
jsp页面转成excel格式的实现思路: 1.使用poi包:poi-bin-3.9-20121203 下载连接地址:http://www.apache.org/dyn/closer.cgi/poi/r ...
- 2017最新的Python教程分享
Python在数据科学盛行的今天,其易于阅读和编写的特点,越来越受编程者追捧.在IEEE发布的2017年编程语言排行榜中,Python也高居首位.如果你有学Python的计划,快来看看小编分享的Pyt ...
- vim代码粘贴缩进混乱的问题[Linux]
详见: http://blog.yemou.net/article/query/info/tytfjhfascvhzxcytp76 直接在vim插入模式下粘贴: 直接粘贴,剪贴板上的每个字符都相当 ...
- poj 2723 二分+2-sat判定
题意:给出n对钥匙,每对钥匙只能选其中一个,在给出每层门需要的两个钥匙,只要一个钥匙就能开门,问最多能到哪层. 思路:了解了2-SAT判定的问题之后主要就是建图的问题了,这里建图就是对于2*n个钥匙, ...
- docker在CentOS7下部署指南
docker只支持CentOS7.x系统,所以近期根据docker官网指南自己搭建了一套,供大家参考. 1.部署Centos7.x系统,查看系统版本. 2.执行 sudo yum update 更新到 ...
- 详解 mpls vpn 的实现
MPLS VPN的实现 一.实验目的 该实验通过MPLS VPN的数据配置,使学生掌握路由器相关接口的IP地址设置.路由协议的配置以及MPLS VPN的完整的创建过程, 从而加深对IP网络的IP编址. ...
- 24点游戏详细截图介绍以及原型、Alpha、Beta对比
原型设计 图片展示 功能与界面设计 1.登录注册 2.手机号验证 3.24点游戏 4.粉色系女生界面 Alpha 图片展示 功能与界面设计 1.24点游戏 2.背景音乐 3.可查看多种可能的答案 4. ...
- 201521123017 《Java程序设计》第3周学习总结
1. 本周学习总结 2. 书面作业 Q1.代码阅读 public class Test1 { private int i = 1;//这行不能修改 private static int j = 2; ...