题目链接:http://poj.org/problem?id=3279

题解:http://www.cnblogs.com/helenawang/p/5538547.html

 /*
━━━━━┒ギリギリ♂ eye!
┓┏┓┏┓┃キリキリ♂ mind!
┛┗┛┗┛┃\○/
┓┏┓┏┓┃ /
┛┗┛┗┛┃ノ)
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┃┃┃┃┃┃
┻┻┻┻┻┻
*/
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <fstream>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath>
using namespace std;
#define fr first
#define sc second
#define cl clear
#define BUG puts("here!!!")
#define W(a) while(a--)
#define pb(a) push_back(a)
#define Rint(a) scanf("%d", &a)
#define Rll(a) scanf("%lld", &a)
#define Rs(a) scanf("%s", a)
#define Cin(a) cin >> a
#define FRead() freopen("in", "r", stdin)
#define FWrite() freopen("out", "w", stdout)
#define Rep(i, len) for(int i = 0; i < (len); i++)
#define For(i, a, len) for(int i = (a); i < (len); i++)
#define Cls(a) memset((a), 0, sizeof(a))
#define Clr(a, x) memset((a), (x), sizeof(a))
#define Full(a) memset((a), 0x7f7f, sizeof(a))
#define lp p << 1
#define rp p << 1 | 1
#define pi 3.14159265359
#define RT return
#define lowbit(x) x & (-x)
#define onenum(x) __builtin_popcount(x)
typedef long long LL;
typedef long double LD;
typedef unsigned long long ULL;
typedef pair<int, int> pii;
typedef pair<string, int> psi;
typedef map<string, int> msi;
typedef vector<int> vi;
typedef vector<LL> vl;
typedef vector<vl> vvl;
typedef vector<bool> vb; const int maxn = ;
const int dx[] = {, , , , -};
const int dy[] = {, , -, , };
int G[maxn][maxn];
int tmp[maxn][maxn];
int ret[maxn][maxn];
int n, m, ans; bool ok(int x, int y) {
return x >= && x < m && y >= && y < n;
} int get(int x, int y) {
int c = G[x][y];
Rep(i, ) {
int xx = x + dx[i];
int yy = y + dy[i];
if(ok(xx, yy)) c += tmp[xx][yy];
}
return c % ;
} int calc() {
For(i, , m) Rep(j, n) if(get(i-, j) != ) tmp[i][j] = ;
Rep(i, n) if(get(m-, i) != ) return -;
int p = ;
Rep(i, m) Rep(j, n) p += tmp[i][j];
return p;
} int main() {
// FRead();
while(~Rint(m) && ~Rint(n)) {
Cls(ret); Cls(tmp); Cls(G); ans = -;
Rep(i, m) Rep(j, n) Rint(G[i][j]);
int nn = << n;
Rep(i, nn) {
Cls(tmp);
Rep(j, n) tmp[][n-j-] = i >> j & ;
int num = calc();
if(num >= && (ans < || ans > num)) {
ans = num;
memcpy(ret, tmp, sizeof(tmp));
}
}
if(ans < ) puts("IMPOSSIBLE");
else {
Rep(i, m) {
Rep(j, n) {
printf("%d%c", ret[i][j], j+==n?'\n':' ');
}
}
}
}
RT ;
}

[POJ3279]Fliptile(开关问题,枚举)的更多相关文章

  1. POJ3279 Fliptile 枚举+简单搜索

    题意:一个矩阵,每个点1或0,然后每次翻一个点,它周围上下左右(包括自己)1->0,0->1,问最少翻几次可以矩阵全是0,忽略题目说的字典序 分析:枚举第一行所有的情况,然后下面几行也随之 ...

  2. POJ--3279(开关问题2个不同时间写的代码)

    Fliptile Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 19730   Accepted: 7118 Descrip ...

  3. POJ3279 Fliptile —— 状态压缩 + 模拟

    题目链接:http://poj.org/problem?id=3279 Fliptile Time Limit: 2000MS   Memory Limit: 65536K Total Submiss ...

  4. POJ3279 Fliptile(暴力)

    有一种暴力是这样的,枚举一边,确定另一边. 这一题是这么解的,枚举第一行所有翻转情况,然后剩下几行其实是确定的,因为前i行翻转方式确定后只能通过第i+1行的翻转来改变第i行的状态,于是依次模拟求出剩下 ...

  5. Fliptile 开关问题 poj 3279

    Fliptile Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4031   Accepted: 1539 Descript ...

  6. (简单) POJ 3279 Fliptile,集合枚举。

    Description Farmer John knows that an intellectually satisfied cow is a happy cow who will give more ...

  7. poj-3279 poj-1753(二进制枚举)

    题目链接:http://poj.org/problem?id=3279 题目大意: 有一个m*n的棋盘(1 ≤ M ≤ 15; 1 ≤ N ≤ 15),每个格子有两面分别是0或1,每次可以对一个格子做 ...

  8. POJ-3279.Fliptile(二进制状态压缩 + dfs) 子集生成

    昨天晚上12点刷到的这个题,一开始一位是BFS,但是一直没有思路.后来推了一下发现只需要依次枚举第一行的所有翻转状态然后再对每个情况的其它田地翻转进行暴力dfs就可以,但是由于二进制压缩学的不是很透, ...

  9. poj3279 Fliptile

    思路: 枚举. 枚举了第一行的操作之后,下面每行的操作也随之确定了.因为在确定了第i行的操作之后,要想再改变a[i][j]的状态只能通过改变a[i + 1][j]来实现.另外,用到了集合的整数表示方法 ...

随机推荐

  1. (菜鸟要飞系列)一,基于Asp.Net MVC5的后台管理系统(前言)

    今天真是个郁闷的日子,因为老师两个星期前给我的一个任务,用递归算法将Oracle数据库中用户信息及权限显示在jquery-treeView上,网上虽然有大神写出了这类算法,但是不贴全部代码,真的很难跟 ...

  2. ECSHOP模糊分词搜索和商品列表关键字飘红功能

    ECSHOP联想下拉框 1.修改page_header.lbi模版文件,将搜索文本框修改为: <input name="keywords" type="text&q ...

  3. OpenLayers中的Layer概念和实践--Openlayers调用WMS服务

    整理转自:http://hi.baidu.com/lixuweiok/item/c406a4e6a6d390e7fa42ba4b 本章我认为是这本书的真正开端,终于开始讲一些有意思的东西了.. 在这一 ...

  4. [C#]Linq To Xml 实例操作- 转

    http://blog.sina.com.cn/s/blog_6c762bb301010oi5.html http://blog.xuite.net/cppbuilder/blog/9940157 在 ...

  5. Netty4.x中文教程系列(三) ChannelHandler

    Netty4.x中文教程系列(四)  ChannelHandler 上一篇文章详细解释了Hello World示例的代码.里面涉及了一些Netty框架的基础. 这篇文章用以解释ChannelHandl ...

  6. [转载]C#获取本机IPv4地址

    C#获取本机IP地址在C#1.0之后都使用下面的这种形式: IPHostEntry ipe = Dns.GetHostEntry(Dns.GetHostName()); IPAddress ipa=i ...

  7. 【面试题021】包含min函数的栈

    [面试题021]包含min函数的栈  MinStack.cpp: 1234567891011121314151617181920212223242526272829303132333435363738 ...

  8. java基础知识回顾之java Thread类学习(五)--java多线程安全问题(锁)同步的前提

    这里举个例子讲解,同步synchronized在什么地方加,以及同步的前提: * 1.必须要有两个以上的线程,才需要同步. * 2.必须是多个线程使用同一个锁. * 3.必须保证同步中只能有一个线程在 ...

  9. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  10. Android 虚拟机安装SD卡

    在cmd命令行下,进入platform-tools目录下.   1.创建sdcard   mksdcard -l mycard 256M E:\android\myCards\mysdcard.img ...