求素数  然后容斥原理
// n之内有平方因子的数的个数sum =n/(2^2) + n/(3^2)+……+n/(k^2) - n/(2^2 * 3^2)-……+…….
// #pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#include <math.h>
#include <stdio.h>
#include <string.h>
using namespace std;
#define MOD 1000000007
#define maxn 1000010
#define maxm 1000010
#define LL long long
LL pr[maxn];
int p;
void getprime(){
int i,j;
for(i=;i<maxn;i+=) pr[i]=;
for(i=;i*i<maxn;i+=)
if(!pr[i])
for(j=i*i;j<maxn;j+=i)
pr[j]=;
pr[p++]=;
for(i=;i<maxn;i+=)
if(!pr[i])pr[p++]=i;
}
LL n,m,sum;
void dfs(int id,int dep,LL ji){
LL tp;
int i;
for(i=id;i<p;i++){
tp=ji*pr[i];
if(tp>m) return;
if(dep%)
sum+=n/(tp*tp);
else
sum-=n/(tp*tp);
dfs(i+,dep+,tp);
}
}
int main(){
getprime();
int T;
scanf("%d",&T);
while(T--){
// scanf("%I64d",&n);
scanf("%lld",&n);
m=sqrt(n+1.0);
sum=;
dfs(,,);
// printf("%I64d\n",n-sum);
printf("%lld\n",n-sum);
}
}

uestc 1720无平方因子数的更多相关文章

  1. UESTC 618 无平方因子数 ( 莫比乌斯)

    UESTC 618 题意:求1到n中无平方因子数的个数 Sample Input 3  1  10  30 Sample Output 1  7  19 思路:与前面的BZOJ 2440相似 #inc ...

  2. cogs 2056. 无平方因子数

    2056. 无平方因子数 ★☆   输入文件:non.in   输出文件:non.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 给出正整数n,m,区间[n,m]内的无 ...

  3. CodeChef - SQRGOOD:Simplify the Square Root (求第N个含平方因子数)

    Tiny Wong the chef used to be a mathematics teacher in a senior high school. At that time, he always ...

  4. ACM-ICPC 2018 南京赛区网络预赛 J sum (找一个数拆成两个无平方因子的组合数)

    题目大意:就是找一个数拆成两个无平方因子的组合数,然后求个前缀和  ; 分析:运用筛法的思想 ,  因为有序对是由两个合法的数字组成的,所以只要保证第一个数合法,第二个数也合法就行,找出合法的第二个数 ...

  5. 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)

    J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any squar ...

  6. BZOJ 2440 中山市选2011 全然平方数 二分答案+容斥原理+莫比乌斯反演

    题目大意:求第k个无平方因子数是多少(无视原题干.1也是全然平方数那岂不是一个数也送不出去了? 无平方因子数(square-free number),即质因数分解之后全部质因数的次数都为1的数 首先二 ...

  7. [SPOJ] DIVCNT2 - Counting Divisors (square) (平方的约数个数前缀和 容斥 卡常)

    题目 vjudge URL:Counting Divisors (square) Let σ0(n)\sigma_0(n)σ0​(n) be the number of positive diviso ...

  8. HDU 5778 abs (BestCoder Round #85 C)素数筛+暴力

    分析:y是一个无平方因子数的平方,所以可以从sqrt(x)向上向下枚举找到第一个无平方因子比较大小 大家可能觉得这样找过去暴力,但实际上无平方因子的分布式非常密集的,相关题目,可以参考 CDOJ:无平 ...

  9. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

随机推荐

  1. 将web应用打成war包发布到服务器

    如何将web应用打成war应用发布到服务器步骤: (1)先有一web应用"google"在C:盘下,如图: google下目录有WEB-INF文件夹(下有classes.lib.w ...

  2. [转载]C# 多线程、控制线程数提高循环输出效率

    C#多线程及控制线程数量,对for循环输出效率. 虽然输出不规律,但是效率明显提高. 思路: 如果要删除1000条数据,只使用for循环,则一个接着一个输出.所以,把1000条数据分成seed段,每段 ...

  3. JAVA数据源连接方式汇总

    最近在研究JAVA的数据源连接方式,学习的时候发现了一位同行写的文章,转载过来,留作记录! 一.问题引入 在java程序中,需要访问数据库,做增删改查等相关操作.如何访问数据库,做数据库的相关操作呢? ...

  4. 任务调度 QUARTZ

    任务调度在目前的JAVA应用程序中运用的十分普遍,故掌握QUARTZ是必备的技能 闲话少说,上官网:http://www.quartz-scheduler.org/ 下载最新1.80资源包 commo ...

  5. script是什么

    script是什么 scirpt就是一个命令,可以制作一份记录输出到终端的记录.对于那些想要真实记录终端会话的人来说,这很有用.该记录可以保存并在以后再打印出来. 怎么用 默认情况下,我们可以通过在终 ...

  6. POJ 2184 Cow Exhibition (01背包的变形)

    本文转载,出处:http://www.cnblogs.com/Findxiaoxun/articles/3398075.html 很巧妙的01背包升级.看完题目以后很明显有背包的感觉,然后就往背包上靠 ...

  7. POJ 2246 Matrix Chain Multiplication(结构体+栈+模拟+矩阵相乘)

    题意:给出矩阵相乘的表达式,让你计算需要的相乘次数,如果不能相乘,则输出error. 思路: 参考的网站连接:http://blog.csdn.net/wangjian8006/article/det ...

  8. httpclient发送multipart/form-data类型参数和用MultipartRequest接收参数

    一.利用HttpClient发送基于Content-Type="multipart/form-data"形式的表单 package com.test.httpclient; imp ...

  9. JAVA:23种设计模式详解(转)2

    我们接着讨论设计模式,上篇文章我讲完了5种创建型模式,这章开始,我将讲下7种结构型模式:适配器模式.装饰模式.代理模式.外观模式.桥接模式.组合模式.享元模式.其中对象的适配器模式是各种模式的起源,我 ...

  10. Xamarin.Android 入门之:Android API版本设置

    一.引言 Xamarin.Android有几个Android API级别设置,确定多个版本的Android应用程序的兼容性.本博客解释了这些设置意味着什么,如何配置它们,以及它们在运行时对您的应用程序 ...