uestc 1720无平方因子数
求素数 然后容斥原理
// n之内有平方因子的数的个数sum =n/(2^2) + n/(3^2)+……+n/(k^2) - n/(2^2 * 3^2)-……+…….
// #pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#include <math.h>
#include <stdio.h>
#include <string.h>
using namespace std;
#define MOD 1000000007
#define maxn 1000010
#define maxm 1000010
#define LL long long
LL pr[maxn];
int p;
void getprime(){
int i,j;
for(i=;i<maxn;i+=) pr[i]=;
for(i=;i*i<maxn;i+=)
if(!pr[i])
for(j=i*i;j<maxn;j+=i)
pr[j]=;
pr[p++]=;
for(i=;i<maxn;i+=)
if(!pr[i])pr[p++]=i;
}
LL n,m,sum;
void dfs(int id,int dep,LL ji){
LL tp;
int i;
for(i=id;i<p;i++){
tp=ji*pr[i];
if(tp>m) return;
if(dep%)
sum+=n/(tp*tp);
else
sum-=n/(tp*tp);
dfs(i+,dep+,tp);
}
}
int main(){
getprime();
int T;
scanf("%d",&T);
while(T--){
// scanf("%I64d",&n);
scanf("%lld",&n);
m=sqrt(n+1.0);
sum=;
dfs(,,);
// printf("%I64d\n",n-sum);
printf("%lld\n",n-sum);
}
}
uestc 1720无平方因子数的更多相关文章
- UESTC 618 无平方因子数 ( 莫比乌斯)
UESTC 618 题意:求1到n中无平方因子数的个数 Sample Input 3 1 10 30 Sample Output 1 7 19 思路:与前面的BZOJ 2440相似 #inc ...
- cogs 2056. 无平方因子数
2056. 无平方因子数 ★☆ 输入文件:non.in 输出文件:non.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] 给出正整数n,m,区间[n,m]内的无 ...
- CodeChef - SQRGOOD:Simplify the Square Root (求第N个含平方因子数)
Tiny Wong the chef used to be a mathematics teacher in a senior high school. At that time, he always ...
- ACM-ICPC 2018 南京赛区网络预赛 J sum (找一个数拆成两个无平方因子的组合数)
题目大意:就是找一个数拆成两个无平方因子的组合数,然后求个前缀和 ; 分析:运用筛法的思想 , 因为有序对是由两个合法的数字组成的,所以只要保证第一个数合法,第二个数也合法就行,找出合法的第二个数 ...
- 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)
J. Sum 26.87% 1000ms 512000K A square-free integer is an integer which is indivisible by any squar ...
- BZOJ 2440 中山市选2011 全然平方数 二分答案+容斥原理+莫比乌斯反演
题目大意:求第k个无平方因子数是多少(无视原题干.1也是全然平方数那岂不是一个数也送不出去了? 无平方因子数(square-free number),即质因数分解之后全部质因数的次数都为1的数 首先二 ...
- [SPOJ] DIVCNT2 - Counting Divisors (square) (平方的约数个数前缀和 容斥 卡常)
题目 vjudge URL:Counting Divisors (square) Let σ0(n)\sigma_0(n)σ0(n) be the number of positive diviso ...
- HDU 5778 abs (BestCoder Round #85 C)素数筛+暴力
分析:y是一个无平方因子数的平方,所以可以从sqrt(x)向上向下枚举找到第一个无平方因子比较大小 大家可能觉得这样找过去暴力,但实际上无平方因子的分布式非常密集的,相关题目,可以参考 CDOJ:无平 ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
随机推荐
- linux杀掉80端口线程命令
80端口被其他程序占用, fuser -k -n tcp 80
- Oracle中的 UPDATE FROM 解决方法
转:http://www.cnblogs.com/JasonLiao/archive/2009/12/23/1630895.html Oracle中的 UPDATE FROM 解决方法 在表的更新操作 ...
- iOS上的jQuery.on()冒泡事件绑定 以及 iOS绝对定位元素中的输入框
上周遇到两个坑. 一是jQuery的on方法 事件冒泡,在iOS中有问题. $("body").on("click",".contentup" ...
- 玩转图片Base64编码
什么是 base64 编码? 图片的 base64 编码就是可以将一副图片数据编码成一串字符串,使用该字符串代替图像地址. 这样做有什么意义呢?我们知道,我们所看到的网页上的每一个图片,都是需要消耗一 ...
- java socket知识点
3.用线程池实现TCP服务器端时,首先创建一个ServerSocket实例,然后创建N个线程,每个线程反复循环,从(共享的)ServerSocket实例接收客户端连接.当多个线程同时调用一个Serve ...
- iOS开发--即时通讯
什么是环信? 1.环信是一个第三平台,提供即时通信(IM–Instant Messaging )的服务 2.环信是在XMPP的基础上进行二次开发 3.环信在网络上传输的数据也是XML 4.使用环信,不 ...
- python list去重的方法
转载于:http://yxmhero1989.blog.163.com/blog/static/112157956201381443244790/ Python很简洁 我们喜欢简单有效的代码 一. ...
- Android:数据存储之SQLite
Android在运行时集成了SQLite , 所以每个Android应用程序都可以使用SQLite数据库. 我们通过SQLiteDatabase这个类的对象操作SQLite数据库,而且不需要身份验证. ...
- Spring面向切面编程(AOP,Aspect Oriented Programming)
AOP为Aspect Oriented Programming的缩写,意为:面向切面编程(也叫面向方面),可以通过预编译方式和运行期动态代理实现在不修改源代码的情况下给程序动态统一添加功能的一种技术. ...
- command-t插件使用说明
类似于SourceInsight的Project Window,快速浏览项目里的文件 \t或:CommandT打开该插件 g:CommandTTraverseSCM设置搜索工程的根目录 tab在提示窗 ...