1 由深度纹理重构世界坐标

屏幕深度和法线纹理简介中对深度和法线纹理的来源、使用及推导过程进行了讲解,本文将介绍使用深度纹理重构世界坐标的方法,并使用重构后的世界坐标模拟激光雷达特效。

​ 本文完整资源见→Unity3D激光雷达特效

1)重构像素点世界坐标

​ 对于屏幕上的任意一点,它对应的世界坐标系中的点记为 P,对应的*裁剪*面上的点记为 Q,相机位置记为 O(坐标为 _WorldSpaceCameraPos),假设 P 点的深度为 depth(由 LinearEyeDepth 函数获取),相机到**面的距离为 near,如下图所示。

​ 根据上图,可以列出以下方程组关系。其中,公式 2 由三角形相似原理得到,公式 3 由 O、P、Q 三点共线得到。

​ 化简得:

​ Q 点在**面上,可以通过*裁剪*面的四个角插值得到,O 和 near 为定值,因此 (OQ / near) 也可以通过插值得到。假设*裁剪*面的四个角分别为 A、B、C、D,我们将 (OA / near)、(OB / near)、(OC / near)、(OD / near) 输入顶点着色器中,光珊化会自动为我们计算插值后的 (OQ / near)。

​ 如下,我们可以在插值寄存器中定义变量 interpolatedRay,用于存储向量 (OQ / near)。

struct v2f {
float4 pos : SV_POSITION; // 裁剪空间顶点坐标
half2 uv : TEXCOORD0; // 纹理uv坐标
float4 interpolatedRay : TEXCOORD1; // 插值射线向量(由相机指向**面上点的向量除以near后的坐标)
};

2)*裁剪*面四角射线向量计算

​ 记*裁剪*面上左下角、右下角、右上角、左上角、中心、右中心、上中心顶点分别为 A、B、C、D、Q、E、F,相机位置为 O 点,如下:

​ 根据几何关系,可以计算向量 OA、OB、OC、OD 如下:

​ 假设摄像机竖直方向的视野角度为 fov(通过 camera.fieldOfView 获取),屏幕宽高比为 aspect(通过 camera.aspect 获取),相机距离*裁剪*面的距离为 near(通过 camera.nearClipPlane 获取),相机向右、向上、向前方向的单位方向向量分别为 right、up、forward(通过 camera.transform 组件获取),则向量 OQ、QE、QF 的计算如下:

2 间距均匀的雷达波特效

2.1 雷达波扩散原理

​ 对于屏幕上任意一点,假设其对应的世界坐标为 worldPos,其线性深度值为 lineDepth(通过 LinearEyeDepth 函数获取),如果 lineDepth >= far - 1(far 通过 _ProjectionParams.z 获取),说明该点落在天空中,不参与雷达波计算,因此本文仅考虑 lineDepth < far - 1 的像素点雷达波计算。

​ 假设雷达波中心坐标为 waveCenter,波纹间距为 waveGap,波纹宽度为 waveLineWidth,雷达波的传播速度和传播时间分别为 waveSpeed、waveTime,雷达波的发射周期为 waveCastTime,雷达波发射的初始距离为 initWaveDist,当前顶点被采样为目标纹理颜色的比率因子为 factor,波纹颜色为 waveColor,当前顶点在叠加雷达波前后的颜色分别为 tex、finalColor,则 finalColor 的计算如下:

float len = length(worldPos - waveCenter); // 当前顶点距离雷达波中心的距离
float time = fmod(waveTime, waveCastTime); // 当前发射周期中, 雷达波传播的时间
float dist = initWaveDist + waveSpeed * time; // 当前发射周期中, 雷达波传播的距离
float mod = fmod(abs(dist - len), waveGap); // 当前顶点距离最*的内环波纹的距离
float rate = min(min(mod, waveGap - mod), waveLineWidth) / waveLineWidth; // 当前顶点处在波纹范围外的比率(值域: [0,1])
float factor = smoothstep(0, 1, rate); // 当前顶点被采样为目标纹理颜色的比率因子(值域: [0,1])
fixed4 finalColor = lerp(waveColor, tex, factor); // 当前顶点叠加雷达波后的颜色

2.2 点选设置雷达波中心

​ LaserRadar.cs

using UnityEngine;

[RequireComponent(typeof(Camera))] // 需要相机组件
public class LaserRadar : MonoBehaviour {
public Color waveColor = Color.red; // 雷达波的颜色
[Range(0.1f, 0.49f)]
public float waveLineWidth = 0.49f; // 雷达波纹的宽度
[Range(1, 10)]
public float waveGap = 2; // 雷达波的间距
[Range(0.5f, 10f)]
public float waveSpeed = 1f; // 雷达波传播的速度
[Range(3, 10)]
public float waveCastTime = 10; // 雷达波发射的时间周期
[Range(3, 10)]
public int waveNum = 5; // 每个发射周期的波纹数
[Range(0.1f, 20)]
public float initWaveDist = 3; // 雷达波初始的距离
[Range(10, 200)]
public float maxWaveDist = 30f; // 雷达波传播的最远距离 private bool enableWave = false; // 是否开启雷达波特效
private Vector4 waveCenter; // 雷达波中心
private float waveTime = 0; // 雷达波开始时间
private Camera cam; // 相机
private Material material = null; // 材质 private void Awake() {
cam = GetComponent<Camera>();
material = new Material(Shader.Find("MyShader/LaserRadar"));
material.hideFlags = HideFlags.DontSave;
} private void OnEnable() {
cam.depthTextureMode |= DepthTextureMode.Depth;
} private void Update() {
if (Input.GetMouseButtonDown(0)) {
Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);
RaycastHit hitInfo;
if (Physics.Raycast(ray, out hitInfo)) {
enableWave = true;
material.SetInt("_Enable", 1);
waveCenter = hitInfo.point;
material.SetVector("_WaveCenter", waveCenter);
waveTime = 0;
}
}
if (enableWave) {
waveTime += Time.deltaTime;
if (waveTime > waveCastTime) {
enableWave = false;
material.SetInt("_Enable", 0);
}
}
} private void OnRenderImage(RenderTexture src, RenderTexture dest) {
if (enableWave) {
Matrix4x4 frustumCorners = GetFrustumCornersRay();
material.SetMatrix("_FrustumCornersRay", frustumCorners);
material.SetColor("_WaveColor", waveColor);
material.SetFloat("_WaveLineWidth", waveLineWidth);
material.SetFloat("_WaveGap", waveGap);
material.SetFloat("_WaveSpeed", waveSpeed);
material.SetFloat("_WaveTime", waveTime);
material.SetFloat("_WaveCastTime", waveCastTime);
material.SetFloat("_WaveNum", waveNum);
material.SetFloat("_InitWaveDist", initWaveDist);
material.SetFloat("_MaxWaveDist", maxWaveDist);
Graphics.Blit(src, dest, material);
} else {
Graphics.Blit(src, dest);
}
} private Matrix4x4 GetFrustumCornersRay() { // 获取插值射线向量(由相机指向**面上四个角点的向量除以near后的坐标)
Matrix4x4 frustumCorners = Matrix4x4.identity;
float fov = cam.fieldOfView;
float near = cam.nearClipPlane;
float aspect = cam.aspect;
float halfHeight = near * Mathf.Tan(fov * 0.5f * Mathf.Deg2Rad);
Vector3 toRight = cam.transform.right * halfHeight * aspect; // 指向右方的向量
Vector3 toTop = cam.transform.up * halfHeight; // 指向上方的向量
Vector3 toForward = cam.transform.forward * near; // 指向前方的向量
Vector3 bottomLeft = (toForward - toTop - toRight) / near; // 指向左下角的射线
Vector3 bottomRight = (toForward + toRight - toTop) / near; // 指向右下角的射线
Vector3 topRight = (toForward + toRight + toTop) / near; // 指向右上角的射线
Vector3 topLeft = (toForward + toTop - toRight) / near; // 指向左上角的射线
frustumCorners.SetRow(0, bottomLeft);
frustumCorners.SetRow(1, bottomRight);
frustumCorners.SetRow(2, topRight);
frustumCorners.SetRow(3, topLeft);
return frustumCorners;
}
}

​ LaserRadar.shader

Shader "MyShader/LaserRadar" { // 雷达波特效
Properties{
_MainTex("Base (RGB)", 2D) = "white" {} // 主纹理
_Enable("Enable", Int) = 0 // 是否启动雷达波特效
_WaveColor("WaveColor", Color) = (1, 0, 0, 1) // 雷达波的颜色
_WaveLineWidth("WaveLineWidth", Float) = 0.49 // 雷达波纹条的宽度
_WaveCenter("WaveCenter", Vector) = (0, 0, 0, 0) // 雷达的波中心
_WaveGap("WaveGap", Float) = 2 // 雷达波的间距
_WaveSpeed("WaveSpeed", Float) = 1 // 雷达波的传播速度
_WaveTime("WaveTime", Float) = 0 // 雷达波传播的时间
_WaveCastTime("WaveCastTime", Float) = 10 // 雷达波发射的时间周期
_WaveNum("WaveNum", Int) = 5 // 每个发射周期的波纹数
_InitWaveDist("InitWaveDist", Float) = 3 // 雷达波初始的距离
_MaxWaveDist("MaxWaveDist", Float) = 30 // 雷达波传播的最远距离
} SubShader{
Pass {
// 深度测试始终通过, 关闭深度写入
ZTest Always ZWrite Off CGPROGRAM #include "UnityCG.cginc" #pragma vertex vert
#pragma fragment frag sampler2D _MainTex; // 主纹理
sampler2D _CameraDepthTexture; // 深度纹理
float4x4 _FrustumCornersRay; // 视锥体四角射线向量(由相机指向**面上四个角点的向量除以near后的坐标)
int _Enable; // 是否启动雷达波特效
fixed4 _WaveColor; // 雷达波的颜色
float _WaveLineWidth; // 雷达波纹的宽度
float4 _WaveCenter; // 雷达波的中心
float _WaveGap; // 雷达波的间距
float _WaveSpeed; // 雷达波的速度
float _WaveTime; // 雷达波传播的时间
float _WaveCastTime; // 雷达波发射的时间周期
int _WaveNum; // 每个发射周期的波纹数
float _InitWaveDist; // 雷达波初始的距离
float _MaxWaveDist; // 雷达波传播的最远距离 struct v2f {
float4 pos : SV_POSITION; // 裁剪空间顶点坐标
half2 uv : TEXCOORD0; // 纹理uv坐标
float4 interpolatedRay : TEXCOORD1; // 插值射线向量(由相机指向**面上点的向量除以near后的坐标)
}; float4 getInterpolatedRay(half2 uv) { // 获取插值射线向量(由相机指向**面上四个角点的向量除以near后的坐标)
int index = 0;
if (uv.x < 0.5 && uv.y < 0.5) {
index = 0;
} else if (uv.x > 0.5 && uv.y < 0.5) {
index = 1;
} else if (uv.x > 0.5 && uv.y > 0.5) {
index = 2;
} else {
index = 3;
}
return _FrustumCornersRay[index];
} v2f vert(appdata_img v) {
v2f o;
o.pos = UnityObjectToClipPos(v.vertex); // 计算裁剪坐标系中顶点坐标, 等价于: mul(unity_MatrixMVP, v.vertex)
o.uv = v.texcoord;
o.interpolatedRay = getInterpolatedRay(v.texcoord); // 获取插值射线向量(由相机指向**面上四个角点的向量除以near后的坐标)
return o;
} fixed4 frag(v2f i) : SV_Target{
if (_Enable == 0) {
return tex2D(_MainTex, i.uv);
}
float depth = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, i.uv); // 非线性的深度, tex2D(_CameraDepthTexture, i.uv).r
float linearDepth = LinearEyeDepth(depth); // 线性的深度
float factor = 1;
if (linearDepth < _ProjectionParams.z - 1) { // _ProjectionParams = (1, near, far, 1 / far)
float3 worldPos = _WorldSpaceCameraPos + linearDepth * i.interpolatedRay.xyz; // 顶点世界坐标
float len = length(worldPos - _WaveCenter.xyz); // 当前顶点距离雷达波中心的距离
if (len < _InitWaveDist || len > _MaxWaveDist) {
return tex2D(_MainTex, i.uv);
}
float time = fmod(_WaveTime, _WaveCastTime); // 当前发射周期中, 雷达波传播的时间
float dist = _InitWaveDist + _WaveSpeed * time; // 当前发射周期中, 雷达波传播的距离
if (len > dist + _WaveLineWidth || len < dist - _WaveGap * (_WaveNum - 1) - _WaveLineWidth) {
return tex2D(_MainTex, i.uv);
}
float mod = fmod(abs(dist - len), _WaveGap); // 当前顶点距离最*的内环波纹的距离
float rate = min(min(mod, _WaveGap - mod), _WaveLineWidth) / _WaveLineWidth; // 当前顶点处在波纹范围外的比率
factor = smoothstep(0, 1, rate); // 当前顶点被采样为目标纹理颜色的比率因子
}
fixed4 tex = tex2D(_MainTex, i.uv);
fixed4 color = lerp(_WaveColor, tex, factor);
return color;
} ENDCG
}
} FallBack off
}

​ 运行效果如下:

2.3 雷达波中心跟随物体运动

​ LaserRadar.cs

using UnityEngine;

[RequireComponent(typeof(Camera))] // 需要相机组件
public class LaserRadar : MonoBehaviour {
public Color waveColor = Color.red; // 雷达波的颜色
[Range(0.1f, 0.49f)]
public float waveLineWidth = 0.49f; // 雷达波纹的宽度
[Range(1, 10)]
public float waveGap = 2; // 雷达波的间距
[Range(0.5f, 10f)]
public float waveSpeed = 1f; // 雷达波传播的速度
[Range(3, 10)]
public float waveCastTime = 10; // 雷达波发射的时间周期
[Range(3, 10)]
public int waveNum = 5; // 每个发射周期的波纹数
[Range(0.1f, 20)]
public float initWaveDist = 3; // 雷达波初始的距离
[Range(10, 200)]
public float maxWaveDist = 30f; // 雷达波传播的最远距离 private bool enableWave = false; // 是否开启雷达波特效
private Vector4 waveCenter; // 雷达波中心
private Camera cam; // 相机
private Material material = null; // 材质
private Transform target; // 发射雷达波的目标物体 private void Awake() {
cam = GetComponent<Camera>();
material = new Material(Shader.Find("MyShader/LaserRadar"));
material.hideFlags = HideFlags.DontSave;
target = GameObject.Find("Car").transform;
} private void OnEnable() {
cam.depthTextureMode |= DepthTextureMode.Depth;
enableWave = true;
material.SetInt("_Enable", 1);
} private void OnRenderImage(RenderTexture src, RenderTexture dest) {
if (enableWave) {
Matrix4x4 frustumCorners = GetFrustumCornersRay();
material.SetMatrix("_FrustumCornersRay", frustumCorners);
material.SetColor("_WaveColor", waveColor);
waveCenter = target.position;
material.SetVector("_WaveCenter", waveCenter);
material.SetFloat("_WaveLineWidth", waveLineWidth);
material.SetFloat("_WaveGap", waveGap);
material.SetFloat("_WaveSpeed", waveSpeed);
material.SetFloat("_WaveCastTime", waveCastTime);
material.SetFloat("_WaveNum", waveNum);
material.SetFloat("_InitWaveDist", initWaveDist);
material.SetFloat("_MaxWaveDist", maxWaveDist);
Graphics.Blit(src, dest, material);
} else {
Graphics.Blit(src, dest);
}
} private Matrix4x4 GetFrustumCornersRay() { // 获取插值射线向量(由相机指向**面上四个角点的向量除以near后的坐标)
Matrix4x4 frustumCorners = Matrix4x4.identity;
float fov = cam.fieldOfView;
float near = cam.nearClipPlane;
float aspect = cam.aspect;
float halfHeight = near * Mathf.Tan(fov * 0.5f * Mathf.Deg2Rad);
Vector3 toRight = cam.transform.right * halfHeight * aspect; // 指向右方的向量
Vector3 toTop = cam.transform.up * halfHeight; // 指向上方的向量
Vector3 toForward = cam.transform.forward * near; // 指向前方的向量
Vector3 bottomLeft = (toForward - toTop - toRight) / near; // 指向左下角的射线
Vector3 bottomRight = (toForward + toRight - toTop) / near; // 指向右下角的射线
Vector3 topRight = (toForward + toRight + toTop) / near; // 指向右上角的射线
Vector3 topLeft = (toForward + toTop - toRight) / near; // 指向左上角的射线
frustumCorners.SetRow(0, bottomLeft);
frustumCorners.SetRow(1, bottomRight);
frustumCorners.SetRow(2, topRight);
frustumCorners.SetRow(3, topLeft);
return frustumCorners;
}
}

​ LaserRadar.shader

Shader "MyShader/LaserRadar" { // 雷达波特效
Properties{
_MainTex("Base (RGB)", 2D) = "white" {} // 主纹理
_Enable("Enable", Int) = 0 // 是否启动雷达波特效
_WaveColor("WaveColor", Color) = (1, 0, 0, 1) // 雷达波的颜色
_WaveLineWidth("WaveLineWidth", Float) = 0.49 // 雷达波纹条的宽度
_WaveCenter("WaveCenter", Vector) = (0, 0, 0, 0) // 雷达的波中心
_WaveGap("WaveGap", Float) = 2 // 雷达波的间距
_WaveSpeed("WaveSpeed", Float) = 1 // 雷达波的传播速度
_WaveCastTime("WaveCastTime", Float) = 10 // 雷达波发射的时间周期
_WaveNum("WaveNum", Int) = 5 // 每个发射周期的波纹数
_InitWaveDist("InitWaveDist", Float) = 3 // 雷达波初始的距离
_MaxWaveDist("MaxWaveDist", Float) = 30 // 雷达波传播的最远距离
} SubShader{
Pass {
// 深度测试始终通过, 关闭深度写入
ZTest Always ZWrite Off CGPROGRAM #include "UnityCG.cginc" #pragma vertex vert
#pragma fragment frag sampler2D _MainTex; // 主纹理
sampler2D _CameraDepthTexture; // 深度纹理
float4x4 _FrustumCornersRay; // 视锥体四角射线向量(由相机指向**面上四个角点的向量除以near后的坐标)
int _Enable; // 是否启动雷达波特效
fixed4 _WaveColor; // 雷达波的颜色
float _WaveLineWidth; // 雷达波纹的宽度
float4 _WaveCenter; // 雷达波的中心
float _WaveGap; // 雷达波的间距
float _WaveSpeed; // 雷达波的速度
float _WaveCastTime; // 雷达波发射的时间周期
int _WaveNum; // 每个发射周期的波纹数
float _InitWaveDist; // 雷达波初始的距离
float _MaxWaveDist; // 雷达波传播的最远距离 struct v2f {
float4 pos : SV_POSITION; // 裁剪空间顶点坐标
half2 uv : TEXCOORD0; // 纹理uv坐标
float4 interpolatedRay : TEXCOORD1; // 插值射线向量(由相机指向**面上点的向量除以near后的坐标)
}; float4 getInterpolatedRay(half2 uv) { // 获取插值射线向量(由相机指向**面上四个角点的向量除以near后的坐标)
int index = 0;
if (uv.x < 0.5 && uv.y < 0.5) {
index = 0;
} else if (uv.x > 0.5 && uv.y < 0.5) {
index = 1;
} else if (uv.x > 0.5 && uv.y > 0.5) {
index = 2;
} else {
index = 3;
}
return _FrustumCornersRay[index];
} v2f vert(appdata_img v) {
v2f o;
o.pos = UnityObjectToClipPos(v.vertex); // 计算裁剪坐标系中顶点坐标, 等价于: mul(unity_MatrixMVP, v.vertex)
o.uv = v.texcoord;
o.interpolatedRay = getInterpolatedRay(v.texcoord); // 获取插值射线向量(由相机指向**面上四个角点的向量除以near后的坐标)
return o;
} fixed4 frag(v2f i) : SV_Target{
if (_Enable == 0) {
return tex2D(_MainTex, i.uv);
}
float depth = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, i.uv); // 非线性的深度, tex2D(_CameraDepthTexture, i.uv).r
float linearDepth = LinearEyeDepth(depth); // 线性的深度
float factor = 1;
if (linearDepth < _ProjectionParams.z - 1) { // _ProjectionParams = (1, near, far, 1 / far)
float3 worldPos = _WorldSpaceCameraPos + linearDepth * i.interpolatedRay.xyz; // 顶点世界坐标
float len = length(worldPos - _WaveCenter.xyz); // 当前顶点距离雷达波中心的距离
if (len < _InitWaveDist || len > _MaxWaveDist) {
return tex2D(_MainTex, i.uv);
}
float time = fmod(_Time.y, _WaveCastTime); // 当前发射周期中, 雷达波传播的时间, _Time = (t/20, t, t*2, t*3)
float dist = _InitWaveDist + _WaveSpeed * time; // 当前发射周期中, 雷达波传播的距离
if (len > dist + _WaveLineWidth || len < dist - _WaveGap * (_WaveNum - 1) - _WaveLineWidth) {
return tex2D(_MainTex, i.uv);
}
float mod = fmod(abs(dist - len), _WaveGap); // 当前顶点距离最*的内环波纹的距离
float rate = min(min(mod, _WaveGap - mod), _WaveLineWidth) / _WaveLineWidth; // 当前顶点处在波纹范围外的比率
factor = smoothstep(0, 1, rate); // 当前顶点被采样为目标纹理颜色的比率因子
}
fixed4 tex = tex2D(_MainTex, i.uv);
fixed4 color = lerp(_WaveColor, tex, factor);
return color;
} ENDCG
}
} FallBack off
}

​ 运行效果如下:

3 间距递增的雷达波特效

3.1 雷达波扩散原理

​ 对于屏幕上任意一点,假设其对应的世界坐标为 worldPos,其线性深度值为 lineDepth(通过 LinearEyeDepth 函数获取),如果 lineDepth >= far - 1(far 通过 _ProjectionParams.z 获取),说明该点落在天空中,不参与雷达波计算,因此本文仅考虑 lineDepth < far - 1 的像素点雷达波计算。

​ 假设雷达波中心坐标为 waveCenter,波纹间距为 waveGap,波纹宽度为 waveLineWidth,雷达波的传播速度和传播时间分别为 waveSpeed、waveTime,雷达波的发射周期为 waveCastTime,雷达波发射的初始距离为 initWaveDist,当前顶点被采样为目标纹理颜色的比率因子为 factor,波纹颜色为 waveColor,当前顶点在叠加雷达波前后的颜色分别为 tex、finalColor,则 finalColor 的计算如下:

float len = length(worldPos - waveCenter); // 当前顶点距离雷达波中心的距离
float time = fmod(waveTime, waveCastTime); // 当前发射周期中, 雷达波传播的时间
float waveGap = initWaveDist + waveSpeed * time; // 当前发射周期中, 雷达波传播的距离
float mod = fmod(len, waveGap); // 当前顶点距离最*的内环波纹的距离
float rate = min(min(mod, waveGap - mod), waveLineWidth) / waveLineWidth; // 当前顶点处在波纹范围外的比率(值域: [0,1])
float factor = smoothstep(0, 1, rate); // 当前顶点被采样为目标纹理颜色的比率因子(值域: [0,1])
fixed4 finalColor = lerp(waveColor, tex, factor); // 当前顶点叠加雷达波后的颜

3.2 点选设置雷达波中心

​ LaserRadar.cs

using UnityEngine;

[RequireComponent(typeof(Camera))] // 需要相机组件
public class LaserRadar1 : MonoBehaviour { public Color waveColor = Color.red; // 雷达波的颜色
[Range(0.1f, 0.49f)]
public float waveLineWidth = 0.49f; // 雷达波纹的宽度
[Range(0.5f, 10f)]
public float waveSpeed = 1f; // 雷达波传播的速度
[Range(3, 10)]
public float waveCastTime = 5; // 雷达波发射的时间周期
[Range(0.1f, 20)]
public float initWaveDist = 3; // 雷达波初始的距离
[Range(10, 200)]
public float maxWaveDist = 30f; // 雷达波传播的最远距离 private bool enableWave = false; // 是否开启雷达波特效
private Vector4 waveCenter; // 雷达波中心
private float waveTime = 0; // 雷达波开始时间
private Camera cam; // 相机
private Material material = null; // 材质 private void Awake() {
cam = GetComponent<Camera>();
material = new Material(Shader.Find("MyShader/LaserRadar"));
material.hideFlags = HideFlags.DontSave;
} private void OnEnable() {
cam.depthTextureMode |= DepthTextureMode.Depth;
} private void Update() {
if (Input.GetMouseButtonDown(0)) {
Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);
RaycastHit hitInfo;
if (Physics.Raycast(ray, out hitInfo)) {
enableWave = true;
material.SetInt("_Enable", 1);
waveCenter = hitInfo.point;
material.SetVector("_WaveCenter", waveCenter);
waveTime = 0;
}
}
if (enableWave) {
waveTime += Time.deltaTime;
if (waveTime > waveCastTime) {
enableWave = false;
material.SetInt("_Enable", 0);
}
}
} private void OnRenderImage(RenderTexture src, RenderTexture dest) {
if (enableWave) {
Matrix4x4 frustumCorners = GetFrustumCornersRay();
material.SetMatrix("_FrustumCornersRay", frustumCorners);
material.SetColor("_WaveColor", waveColor);
material.SetFloat("_WaveLineWidth", waveLineWidth);
material.SetFloat("_WaveSpeed", waveSpeed);
material.SetFloat("_WaveTime", waveTime);
material.SetFloat("_WaveCastTime", waveCastTime);
material.SetFloat("_InitWaveDist", initWaveDist);
material.SetFloat("_MaxWaveDist", maxWaveDist);
Graphics.Blit(src, dest, material);
} else {
Graphics.Blit(src, dest);
}
} private Matrix4x4 GetFrustumCornersRay() { // 获取插值射线向量(由相机指向**面上四个角点的向量除以near后的坐标)
Matrix4x4 frustumCorners = Matrix4x4.identity;
float fov = cam.fieldOfView;
float near = cam.nearClipPlane;
float aspect = cam.aspect;
float halfHeight = near * Mathf.Tan(fov * 0.5f * Mathf.Deg2Rad);
Vector3 toRight = cam.transform.right * halfHeight * aspect; // 指向右方的向量
Vector3 toTop = cam.transform.up * halfHeight; // 指向上方的向量
Vector3 toForward = cam.transform.forward * near; // 指向前方的向量
Vector3 bottomLeft = (toForward - toTop - toRight) / near; // 指向左下角的射线
Vector3 bottomRight = (toForward + toRight - toTop) / near; // 指向右下角的射线
Vector3 topRight = (toForward + toRight + toTop) / near; // 指向右上角的射线
Vector3 topLeft = (toForward + toTop - toRight) / near; // 指向左上角的射线
frustumCorners.SetRow(0, bottomLeft);
frustumCorners.SetRow(1, bottomRight);
frustumCorners.SetRow(2, topRight);
frustumCorners.SetRow(3, topLeft);
return frustumCorners;
}
}

​ LaserRadar.shader

Shader "MyShader/LaserRadar" { // 雷达波特效
Properties{
_MainTex("Base (RGB)", 2D) = "white" {} // 主纹理
_Enable("Enable", Int) = 0 // 是否启动雷达波特效
_WaveColor("WaveColor", Color) = (1, 0, 0, 1) // 雷达波的颜色
_WaveLineWidth("WaveLineWidth", Float) = 0.3 // 雷达波纹的宽度
_WaveCenter("WaveCenter", Vector) = (0, 0, 0, 0) // 雷达的波中心
_WaveSpeed("WaveSpeed", Float) = 1 // 雷达波的传播速度
_WaveTime("WaveTime", Float) = 0 // 雷达波传播的时间
_WaveCastTime("WaveCastTime", Float) = 5 // 雷达波发射的时间周期
_InitWaveDist("InitWaveDist", Float) = 3 // 雷达波初始的距离
_MaxWaveDist("MaxWaveDist", Float) = 30 // 雷达波传播的最远距离
} SubShader{
Pass {
// 深度测试始终通过, 关闭深度写入
ZTest Always ZWrite Off CGPROGRAM #include "UnityCG.cginc" #pragma vertex vert
#pragma fragment frag sampler2D _MainTex; // 主纹理
sampler2D _CameraDepthTexture; // 深度纹理
float4x4 _FrustumCornersRay; // 视锥体四角射线向量(由相机指向**面上四个角点的向量除以near后的坐标)
int _Enable; // 是否启动雷达波特效
fixed4 _WaveColor; // 雷达波的颜色
float _WaveLineWidth; // 雷达波纹的宽度
float4 _WaveCenter; // 雷达波的中心
float _WaveSpeed; // 雷达波的速度
float _WaveTime; // 雷达波传播的时间
float _WaveCastTime; // 雷达波发射的时间周期
float _InitWaveDist; // 雷达波初始的距离
float _MaxWaveDist; // 雷达波传播的最远距离 struct v2f {
float4 pos : SV_POSITION; // 裁剪空间顶点坐标
half2 uv : TEXCOORD0; // 纹理uv坐标
float4 interpolatedRay : TEXCOORD1; // 插值射线向量(由相机指向**面上点的向量除以near后的坐标)
}; float4 getInterpolatedRay(half2 uv) { // 获取插值射线向量(由相机指向**面上四个角点的向量除以near后的坐标)
int index = 0;
if (uv.x < 0.5 && uv.y < 0.5) {
index = 0;
} else if (uv.x > 0.5 && uv.y < 0.5) {
index = 1;
} else if (uv.x > 0.5 && uv.y > 0.5) {
index = 2;
} else {
index = 3;
}
return _FrustumCornersRay[index];
} v2f vert(appdata_img v) {
v2f o;
o.pos = UnityObjectToClipPos(v.vertex); // 计算裁剪坐标系中顶点坐标, 等价于: mul(unity_MatrixMVP, v.vertex)
o.uv = v.texcoord;
o.interpolatedRay = getInterpolatedRay(v.texcoord); // 获取插值射线向量(由相机指向**面上四个角点的向量除以near后的坐标)
return o;
} fixed4 frag(v2f i) : SV_Target {
if (_Enable == 0) {
return tex2D(_MainTex, i.uv);
}
float depth = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, i.uv); // 非线性的深度, tex2D(_CameraDepthTexture, i.uv).r
float linearDepth = LinearEyeDepth(depth); // 线性的深度
float factor = 1;
if (linearDepth < _ProjectionParams.z - 1) { // _ProjectionParams = (1, near, far, 1 / far)
float3 worldPos = _WorldSpaceCameraPos + linearDepth * i.interpolatedRay.xyz; // 顶点世界坐标
float len = length(worldPos - _WaveCenter.xyz); // 当前顶点距离雷达波中心的距离
if (len < _InitWaveDist || len > _MaxWaveDist) {
return tex2D(_MainTex, i.uv);
}
float time = fmod(_WaveTime, _WaveCastTime); // 当前发射周期中, 雷达波传播的时间
float waveGap = _InitWaveDist + _WaveSpeed * time; // 当前发射周期中, 雷达波传播的距离
float mod = fmod(len, waveGap); // 当前顶点距离最*的内环波纹的距离
float rate = min(min(mod, waveGap - mod), _WaveLineWidth) / _WaveLineWidth; // 当前顶点处在波纹范围外的比率
factor = smoothstep(0, 1, rate); // 当前顶点被采样为目标纹理颜色的比率因子
}
fixed4 tex = tex2D(_MainTex, i.uv);
fixed4 color = lerp(_WaveColor, tex, factor);
return color;
} ENDCG
}
} FallBack off
}

​ 运行效果如下:

3.3 雷达波中心跟随物体运动

​ LaserRadar.cs

using UnityEngine;

[RequireComponent(typeof(Camera))] // 需要相机组件
public class LaserRadar : MonoBehaviour {
public Color waveColor = Color.red; // 雷达波的颜色
[Range(0.1f, 0.49f)]
public float waveLineWidth = 0.49f; // 雷达波纹的宽度
[Range(0.5f, 10f)]
public float waveSpeed = 1f; // 雷达波传播的速度
[Range(3, 10)]
public float waveCastTime = 5; // 雷达波发射的时间周期
[Range(0.1f, 20)]
public float initWaveDist = 3; // 雷达波初始的距离
[Range(10, 200)]
public float maxWaveDist = 30f; // 雷达波传播的最远距离 private bool enableWave = false; // 是否开启雷达波特效
private Vector4 waveCenter; // 雷达波中心
private Camera cam; // 相机
private Material material = null; // 材质
private Transform target; // 发射雷达波的目标物体 private void Awake() {
cam = GetComponent<Camera>();
material = new Material(Shader.Find("MyShader/LaserRadar"));
material.hideFlags = HideFlags.DontSave;
target = GameObject.Find("Car").transform;
} private void OnEnable() {
cam.depthTextureMode |= DepthTextureMode.Depth;
enableWave = true;
material.SetInt("_Enable", 1);
} private void OnRenderImage(RenderTexture src, RenderTexture dest) {
if (enableWave) {
Matrix4x4 frustumCorners = GetFrustumCornersRay();
material.SetMatrix("_FrustumCornersRay", frustumCorners);
material.SetColor("_WaveColor", waveColor);
waveCenter = target.position;
material.SetVector("_WaveCenter", waveCenter);
material.SetFloat("_WaveLineWidth", waveLineWidth);
material.SetFloat("_WaveSpeed", waveSpeed);
material.SetFloat("_WaveCastTime", waveCastTime);
material.SetFloat("_InitWaveDist", initWaveDist);
material.SetFloat("_MaxWaveDist", maxWaveDist);
Graphics.Blit(src, dest, material);
} else {
Graphics.Blit(src, dest);
}
} private Matrix4x4 GetFrustumCornersRay() { // 获取插值射线向量(由相机指向**面上四个角点的向量除以near后的坐标)
Matrix4x4 frustumCorners = Matrix4x4.identity;
float fov = cam.fieldOfView;
float near = cam.nearClipPlane;
float aspect = cam.aspect;
float halfHeight = near * Mathf.Tan(fov * 0.5f * Mathf.Deg2Rad);
Vector3 toRight = cam.transform.right * halfHeight * aspect; // 指向右方的向量
Vector3 toTop = cam.transform.up * halfHeight; // 指向上方的向量
Vector3 toForward = cam.transform.forward * near; // 指向前方的向量
Vector3 bottomLeft = (toForward - toTop - toRight) / near; // 指向左下角的射线
Vector3 bottomRight = (toForward + toRight - toTop) / near; // 指向右下角的射线
Vector3 topRight = (toForward + toRight + toTop) / near; // 指向右上角的射线
Vector3 topLeft = (toForward + toTop - toRight) / near; // 指向左上角的射线
frustumCorners.SetRow(0, bottomLeft);
frustumCorners.SetRow(1, bottomRight);
frustumCorners.SetRow(2, topRight);
frustumCorners.SetRow(3, topLeft);
return frustumCorners;
}
}

​ LaserRadar.shader

Shader "MyShader/LaserRadar" { // 雷达波特效
Properties{
_MainTex("Base (RGB)", 2D) = "white" {} // 主纹理
_Enable("Enable", Int) = 0 // 是否启动雷达波特效
_WaveColor("WaveColor", Color) = (1, 0, 0, 1) // 雷达波的颜色
_WaveLineWidth("WaveLineWidth", Float) = 0.49 // 雷达波纹的宽度
_WaveCenter("WaveCenter", Vector) = (0, 0, 0, 0) // 雷达的波中心
_WaveSpeed("WaveSpeed", Float) = 1 // 雷达波的传播速度
_WaveCastTime("WaveCastTime", Float) = 5 // 雷达波发射的时间周期
_InitWaveDist("InitWaveDist", Float) = 3 // 雷达波初始的距离
_MaxWaveDist("MaxWaveDist", Float) = 30 // 雷达波传播的最远距离
} SubShader{
Pass {
// 深度测试始终通过, 关闭深度写入
ZTest Always ZWrite Off CGPROGRAM #include "UnityCG.cginc" #pragma vertex vert
#pragma fragment frag sampler2D _MainTex; // 主纹理
sampler2D _CameraDepthTexture; // 深度纹理
float4x4 _FrustumCornersRay; // 视锥体四角射线向量(由相机指向**面上四个角点的向量除以near后的坐标)
int _Enable; // 是否启动雷达波特效
fixed4 _WaveColor; // 雷达波的颜色
float _WaveLineWidth; // 雷达波纹的宽度
float4 _WaveCenter; // 雷达波的中心
float _WaveSpeed; // 雷达波的速度
float _WaveCastTime; // 雷达波发射的时间周期
float _InitWaveDist; // 雷达波初始的距离
float _MaxWaveDist; // 雷达波传播的最远距离 struct v2f {
float4 pos : SV_POSITION; // 裁剪空间顶点坐标
half2 uv : TEXCOORD0; // 纹理uv坐标
float4 interpolatedRay : TEXCOORD1; // 插值射线向量(由相机指向**面上点的向量除以near后的坐标)
}; float4 getInterpolatedRay(half2 uv) { // 获取插值射线向量(由相机指向**面上四个角点的向量除以near后的坐标)
int index = 0;
if (uv.x < 0.5 && uv.y < 0.5) {
index = 0;
}
else if (uv.x > 0.5 && uv.y < 0.5) {
index = 1;
} else if (uv.x > 0.5 && uv.y > 0.5) {
index = 2;
} else {
index = 3;
}
return _FrustumCornersRay[index];
} v2f vert(appdata_img v) {
v2f o;
o.pos = UnityObjectToClipPos(v.vertex); // 计算裁剪坐标系中顶点坐标, 等价于: mul(unity_MatrixMVP, v.vertex)
o.uv = v.texcoord;
o.interpolatedRay = getInterpolatedRay(v.texcoord); // 获取插值射线向量(由相机指向**面上四个角点的向量除以near后的坐标)
return o;
} fixed4 frag(v2f i) : SV_Target {
if (_Enable == 0) {
return tex2D(_MainTex, i.uv);
}
float depth = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, i.uv); // 非线性的深度, tex2D(_CameraDepthTexture, i.uv).r
float linearDepth = LinearEyeDepth(depth); // 线性的深度
float factor = 1;
if (linearDepth < _ProjectionParams.z - 1) { // _ProjectionParams = (1, near, far, 1 / far)
float3 worldPos = _WorldSpaceCameraPos + linearDepth * i.interpolatedRay.xyz; // 顶点世界坐标
float len = length(worldPos - _WaveCenter.xyz); // 当前顶点距离雷达波中心的距离
if (len < _InitWaveDist || len > _MaxWaveDist) {
return tex2D(_MainTex, i.uv);
}
float time = fmod(_Time.y, _WaveCastTime); // 当前发射周期中, 雷达波传播的时间, _Time = (t/20, t, t*2, t*3)
float waveGap = _InitWaveDist + _WaveSpeed * time; // 当前发射周期中, 雷达波传播的距离
float mod = fmod(len, waveGap); // 当前顶点距离最*的内环波纹的距离
float rate = min(min(mod, waveGap - mod), _WaveLineWidth) / _WaveLineWidth; // 当前顶点处在波纹范围外的比率
factor = smoothstep(0, 1, rate); // 当前顶点被采样为目标纹理颜色的比率因子
}
fixed4 tex = tex2D(_MainTex, i.uv);
fixed4 color = lerp(_WaveColor, tex, factor);
return color;
} ENDCG
}
} FallBack off
}

​ 运行效果如下:

​ 声明:本文转自【Unity3D】激光雷达特效

【Unity3D】激光雷达特效的更多相关文章

  1. Unity3d粒子特效:制作火焰效果

    效果 分析 真实的火焰效果,通常包括:火.火光.火星等组成部分,而火焰对周围环境的烘焙,可以通过灯光实现,如点光源. 针对火焰组成部分,我们可以创建对应的粒子系统组件,实现相应的效果,如下图所示: 1 ...

  2. 【Unity3D】基于粒子系统实现烟花特效

    1 需求实现 ​ 粒子系统ParticleSystem 中介绍了粒子初始化.粒子发射.发射器形状.渲染器.碰撞.子发射器.拖尾等粒子系统的基本用法,本节将基于粒子系统实现烟花特效. ​ 实现需求如下( ...

  3. Unity塔防游戏开发

    Unity3D塔防开发流程 配置环境及场景搭建编程语言:C#,略懂些许设计模式,如果不了解设计模式,BUG More开发工具:Unity3D编辑器.Visual Studio编译器开发建议:了解Uni ...

  4. Unity3D特效-场景淡入淡出

    最近公司开始搞Unity3D..整个游戏..特效需求还是比较多的.关于UI部分的特效淡入淡出.看网上用的方法都是用个黑东东遮挡然后设置alpha这么搞....本大神感觉非常的low.而且很渣.故奋笔疾 ...

  5. unity3d 游戏插件 溶解特效插件 - Dissolve Shader

    unity3d 游戏插件 溶解特效插件 - Dissolve Shader   链接: https://pan.baidu.com/s/1hr7w39U 密码: 3ed2

  6. Unity3D之挥动武器产生的剑痕特效

    网维教程网 观看很多其它教程 眼下已知3种方法能够做这样的剑痕特效 1.尾随特效 2.程序实现动态面来处理剑痕动画. 3.美术实现剑痕动画,直接坐在模型动画里面 (由于我不会美术所以这个忽略 嘿嘿) ...

  7. [Unity3D]Unity3D游戏开发之刀光剑影特效的实现

    大家好,我是秦元培,欢迎大家关注我的博客,我的博客地址是blog.csdn.net/qinyuanpei. 我实在不明确有的人为什么不喜欢武侠/仙侠类游戏,也许是因为武侠/仙侠类游戏身上被永远烙上的国 ...

  8. Unity3D学习笔记——组件之Effects(效果/特效)——Particle System(粒子系统)

    Effects:效果/特效. Particle System:粒子系统.可用于创建烟雾.气流.火焰.涟漪等效果. 在Unity3D 3.5版本之后退出了新的shuriken粒子系统:   添加组件之后 ...

  9. WPF特效-绘制实时2D激光雷达图

    原文:WPF特效-绘制实时2D激光雷达图 接前两篇: https://blog.csdn.net/u013224722/article/details/80738619 https://blog.cs ...

  10. unity3d笔记:控制特效的播放速度

           一般在游戏中,主角或者怪物会受到减速效果,或者攻击速度减慢等类似的状态.本身动作减速的同时,衔接在角色上的特效也需要改变相应的播放速度.一般特效有三个游戏组件:   关键点就是改变Ani ...

随机推荐

  1. 2020-12-29:mysql中,innodb表里,某一条数据删除了之后,这条数据会被真实的擦掉吗,还是删除了关系?

    福哥答案2020-12-29:[答案来自此链接,答案相当详细:](https://www.zhihu.com/question/436957843)面试的时候受 <MySQL技术内幕 InnoD ...

  2. 2021-10-20:分数到小数。给定两个整数,分别表示分数的分子numerator和分母denominator,以字符串形式返回小数。如果小数部分为循环小数,则将循环的部分括在括号内。输入: num

    2021-10-20:分数到小数.给定两个整数,分别表示分数的分子numerator和分母denominator,以字符串形式返回小数.如果小数部分为循环小数,则将循环的部分括在括号内.输入: num ...

  3. django安装依赖包报错No such file or directory: 'requirement.txt'和警告You are using pip version 22.0.4; however, version 23.0.1 is available.

    ERROR: Could not open requirements file: [Errno 2] No such file or directory: 'requirement.txt'WARNI ...

  4. Django自定义视图类及实现请求参数和返回参数加解密

    django rest_framework中GenericAPIView配合拓展类mixin或者视图集viewset可以复用其代码,减少自己编写的代码量.下面我要实现自己的视图类,以减少代码量新建一个 ...

  5. 代码随想录算法训练营Day40 动态规划

    代码随想录算法训练营 代码随想录算法训练营Day40 动态规划| 343. 整数拆分 96.不同的二叉搜索树 343. 整数拆分 题目链接:343. 整数拆分 给定一个正整数 n,将其拆分为至少两个正 ...

  6. cv学习总结(11.6-11.13)

    两层全连接神经网络的内容要比想象中的多很多,代码量也很多,在cs231n只用了15分钟讲解的东西我用了一周半的时间才完全的消化理解,这周终于完成了全连接神经网络博客的书写https://www.cnb ...

  7. PE 结构的三种地址

    三种地址   (一)VA(虚拟地址):PE 文件被 Windows 加载到内存后的地址.   (二) RVA(相对虚拟地址):PE 文件虚拟地址相对于映射基地址(对于 EXE 文件来说,映射基地址是 ...

  8. 苹果WWDC发布会总结

    今年的全球开发者大会没有让人失望.在今天的主题演讲中,苹果首次展示了备受期待的混合现实耳机,证实了过去几个月出现的许多谣言. 虽然这次苹果的 Vision Pro耳机成为了焦点,但该公司还发布了一些其 ...

  9. C++面试八股文:C++中,函数的参数应该传值还是传引用?

    某日二师兄参加XXX科技公司的C++工程师开发岗位第8面: 面试官:C++中,函数的参数应该传值还是传引用? 二师兄:要看参数的用途.如果是出参,必须传引用.如果是入参,主要考虑参数类型的大小,来决定 ...

  10. Python Joblib库使用学习总结

    实践环境 python 3.6.2 Joblib 简介 Joblib是一组在Python中提供轻量级流水线的工具.特别是: 函数的透明磁盘缓存和延迟重新计算(记忆模式) 简单易用的并行计算 Jobli ...