Seaborn结构化图形绘制(FacetGrid)
结构化图形绘制(FacetGrid)
可实现多行多列个性化绘制图形。
sns.FacetGrid(
data,
row=None,
col=None,
hue=None,
col_wrap=None,
sharex=True,
sharey=True,
height=3,
aspect=1,
palette=None,
row_order=None,
col_order=None,
hue_order=None,
hue_kws=None,
dropna=True,
legend_out=True,
despine=True,
margin_titles=False,
xlim=None,
ylim=None,
subplot_kws=None,
gridspec_kws=None,
size=None,
)
Docstring: Multi-plot grid for plotting conditional relationships.
Init docstring:
Initialize the matplotlib figure and FacetGrid object.
This class maps a dataset onto multiple axes arrayed in a grid of rows
and columns that correspond to *levels* of variables in the dataset.
The plots it produces are often called "lattice", "trellis", or
"small-multiple" graphics.
It can also represent levels of a third varaible with the ``hue``
parameter, which plots different subets of data in different colors.
This uses color to resolve elements on a third dimension, but only
draws subsets on top of each other and will not tailor the ``hue``
parameter for the specific visualization the way that axes-level
functions that accept ``hue`` will.
When using seaborn functions that infer semantic mappings from a
dataset, care must be taken to synchronize those mappings across
facets. In most cases, it will be better to use a figure-level function
(e.g. :func:`relplot` or :func:`catplot`) than to use
:class:`FacetGrid` directly.
The basic workflow is to initialize the :class:`FacetGrid` object with
the dataset and the variables that are used to structure the grid. Then
one or more plotting functions can be applied to each subset by calling
:meth:`FacetGrid.map` or :meth:`FacetGrid.map_dataframe`. Finally, the
plot can be tweaked with other methods to do things like change the
axis labels, use different ticks, or add a legend. See the detailed
code examples below for more information.
See the :ref:`tutorial <grid_tutorial>` for more information.
Parameters
----------
data : DataFrame
Tidy ("long-form") dataframe where each column is a variable and each
row is an observation.
row, col, hue : strings
Variables that define subsets of the data, which will be drawn on
separate facets in the grid. See the ``*_order`` parameters to
control the order of levels of this variable.
col_wrap : int, optional
"Wrap" the column variable at this width, so that the column facets
span multiple rows. Incompatible with a ``row`` facet.
share{x,y} : bool, 'col', or 'row' optional
If true, the facets will share y axes across columns and/or x axes
across rows.
height : scalar, optional
Height (in inches) of each facet. See also: ``aspect``.
aspect : scalar, optional
Aspect ratio of each facet, so that ``aspect * height`` gives the width
of each facet in inches.
palette : palette name, list, or dict, optional
Colors to use for the different levels of the ``hue`` variable. Should
be something that can be interpreted by :func:`color_palette`, or a
dictionary mapping hue levels to matplotlib colors.
{row,col,hue}_order : lists, optional
Order for the levels of the faceting variables. By default, this
will be the order that the levels appear in ``data`` or, if the
variables are pandas categoricals, the category order.
hue_kws : dictionary of param -> list of values mapping
Other keyword arguments to insert into the plotting call to let
other plot attributes vary across levels of the hue variable (e.g.
the markers in a scatterplot).
legend_out : bool, optional
If ``True``, the figure size will be extended, and the legend will be
drawn outside the plot on the center right.
despine : boolean, optional
Remove the top and right spines from the plots.
margin_titles : bool, optional
If ``True``, the titles for the row variable are drawn to the right of
the last column. This option is experimental and may not work in all
cases.
{x, y}lim: tuples, optional
Limits for each of the axes on each facet (only relevant when
share{x, y} is True.
subplot_kws : dict, optional
Dictionary of keyword arguments passed to matplotlib subplot(s)
methods.
gridspec_kws : dict, optional
Dictionary of keyword arguments passed to matplotlib's ``gridspec``
module (via ``plt.subplots``). Requires matplotlib >= 1.4 and is
ignored if ``col_wrap`` is not ``None``.
See Also
--------
PairGrid : Subplot grid for plotting pairwise relationships.
relplot : Combine a relational plot and a :class:`FacetGrid`.
catplot : Combine a categorical plot and a :class:`FacetGrid`.
lmplot : Combine a regression plot and a :class:`FacetGrid`.
#导入数据
tips = sns.load_dataset('tips', data_home='./seaborn-data')
tips
#设置风格
sns.set_style('white')
#col设置网格的分类列,row设置分类行
ax = sns.FacetGrid(tips, col='time', row='sex')
散点图
ax = sns.FacetGrid(tips, col='time', row='sex')
#利用map方法在网格内绘制散点图sns.scatterplot = plt.scatter,sns的散点图更美观
ax = ax.map(sns.scatterplot, 'total_bill', 'tip')
#hue设置分类绘制
ax = sns.FacetGrid(tips, col='time', hue='sex')
ax = ax.map(sns.scatterplot, 'total_bill', 'tip')
#添加图例
ax = ax.add_legend()
#定义一个文本函数
def annotate(data, **kws):
n = len(data)
ax = plt.gca()
ax.text(.1, .6, f"N={n}", transform=ax.transAxes)
ax = sns.FacetGrid(tips, col='time')
ax = ax.map(sns.scatterplot, 'total_bill', 'tip')
#添加文本标签
ax = ax.map_dataframe(annotate)
#其它参数
#margin_titles设置边缘标头
ax = sns.FacetGrid(tips, col='sex', row='time', margin_titles=True)
ax.map(sns.scatterplot, 'total_bill', 'tip')
#set_axis_labels设置x轴和y轴标签
ax.set_axis_labels('Totall bill($)', 'Tip($)')
#set_titles设置标头(会出现重叠现象)
ax.set_titles(col_template='{col_name} patrons', row_template='{row_name}')
#坐标上下限和刻度设置
ax.set(xlim=(0,60), ylim=(0, 12), xticks=[10, 30, 50], yticks=[2, 6, 10])
#存储图片
ax.savefig('facet_plot.png')
#despine设置是否显示上和右边框线
ax = sns.FacetGrid(tips, col='sex', row='time', margin_titles=True, despine=False)
ax.map(sns.scatterplot, 'total_bill', 'tip')
#设置图形间隔
ax.fig.subplots_adjust(wspace=0, hspace=0)
#QQ图:检验样本数据概率分布(例如正态分布)的方法,直观的表示观测值与预测值之间的差异,或两个数之间的差异
from scipy import stats
#定义QQ图函数
def qqplot(x, y, **kwargs):
_, xr = stats.probplot(x, fit=False) #拟合概率图
_, yr = stats.probplot(y, fit=False)
sns.scatterplot(xr, yr, **kwargs) #**kwargs表示关键字参数,可以用字典形式传入参数
g = sns.FacetGrid(tips, col='smoker', hue='sex')
g = g.map(qqplot, 'total_bill', 'tip')
g = g.add_legend()
直方图
#直方图
g = sns.FacetGrid(tips, col='time', row='smoker')
g = g.map(plt.hist, 'total_bill')
#bins设置直方图个数,color设置颜色
bins = np.arange(0, 65, 5)
g = sns.FacetGrid(tips, col='time', row='smoker')
g = g.map(plt.hist, 'total_bill', bins=bins, color='r')
#height设置高度,aspece设宽高比
bins = np.arange(0, 65, 5)
g = sns.FacetGrid(tips, col='time', row='smoker', height=4, aspect=.5)
g = g.map(plt.hist, 'total_bill', bins=bins, color='r')
#col_order设置显示顺序
bins = np.arange(0, 65, 5)
g = sns.FacetGrid(tips, col='smoker', col_order=['Yea', 'No'])
g = g.map(plt.hist, 'total_bill', bins=bins, color='m')
直方密度图
#直方密度图
g = sns.FacetGrid(tips, col='time', row='smoker')
g = g.map(sns.distplot, 'total_bill')
折线图
#导入数据
att = sns.load_dataset('attention', data_home='./seaborn-data')
#col_wrap设置列数,height设置高度,marker设置标记点样式
g = sns.FacetGrid(att, col='subject', col_wrap=5, height=1.5)
g = g.map(plt.plot, 'solutions', 'score', marker='.')
Seaborn结构化图形绘制(FacetGrid)的更多相关文章
- d3.js 之SVG:矢量化图形绘制
SVG Scalable Vector Graphics 是一个成熟的W3C标准,被设计用来在web和移动平台 上展示可交互的图形.和HTML类似,SVG也支持CSS和JavaScript.尽管可以使 ...
- seaborn线性关系数据可视化:时间线图|热图|结构化图表可视化
一.线性关系数据可视化lmplot( ) 表示对所统计的数据做散点图,并拟合一个一元线性回归关系. lmplot(x, y, data, hue=None, col=None, row=None, p ...
- CMM模型,结构化开发方法和面向对象开发方法的比较,UML(统一建模语言),jackson开发方法
CMM模型 一.CMM简介 CMM,英文全称为Capability Maturity Model for Software,即:软件成熟度模型. CMM的核心是把软件开发视为一个过程.它是对于软件在定 ...
- 【Windows编程】系列第五篇:GDI图形绘制
上两篇我们学习了文本字符输出以及Unicode编写程序,知道如何用常见Win32输出文本字符串,这一篇我们来学习Windows编程中另一个非常重要的部分GDI图形绘图.Windows的GDI函数包含数 ...
- 图形绘制 Canvas Paint Path 详解
图形绘制简介 Android中使用图形处理引擎,2D部分是android SDK内部自己提供,3D部分是用Open GL ES 1.0.大部分2D使用的api都在android.grap ...
- XHTML 结构化:使用 XHTML 重构网站
http://www.w3school.com.cn/xhtml/xhtml_structural_01.asp 我们曾经为本节撰写的标题是:"XHTML : 简单的规则,容易的方针.&qu ...
- 结构化您的Python工程
我们对于"结构化"的定义是您关注于怎样使您的项目最好地满足它的对象性,我们 需要去考虑如何更好地利用Python的特性来创造简洁.高效的代码.在实践层面, "结构化&qu ...
- (转)GPU图形绘制管线
摘抄“GPU Programming And Cg Language Primer 1rd Edition” 中文名“GPU编程与CG语言之阳春白雪下里巴人”第二章. 图形绘制管线描述GPU渲染流程, ...
- 妙味,结构化模块化 整站开发my100du
********************************************************************* 重要:重新审视的相关知识 /* 妙味官网:www.miaov ...
- Python中的结构化数据分析利器-Pandas简介
Pandas是python的一个数据分析包,最初由AQR Capital Management于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的PyData开发tea ...
随机推荐
- python部署项目为什么要用Nginx和uWSGI
一.测试运行python项目 1.1 Flask项目 说明1:当我们直接用编译器运行Flask项目的时候,会有一个提示:意思就是:这是开发环境的服务器,不能用于生产环境的部署,请使用WSGI的服务器替 ...
- js之以面向对象的形式书写贪吃蛇
此代码存在一定的小bug,当蛇出边界之后存在一定的小问题 分析贪吃蛇功能需求: 1.食物 (1)每次生成一个,位置随意但不可超出规定范围 (2)每次蛇吃到食物之后,前一个食物消失同时新的食物又生成 ( ...
- 【Azure API 管理】API Management service (APIM) 如何实现禁止外网访问
问题描述 API Management service 设置禁止外网访问,请求通过外网(Internet)将无法解析到APIM的网关地址,只能通过APIM所集成的内网(Virtual Network) ...
- FeignClient 报错: A bean with that name has already been defined and overriding is disabled.
1. 错误信息 *************************** APPLICATION FAILED TO START *************************** Descript ...
- Java 多线程------测试 Thread中的常用方法 + 线程的优先级:
1 package com.bytezero.threadexer; 2 3 import javax.sound.midi.Soundbank; 4 5 /** 6 * 测试 Thread中的常用方 ...
- JVM解析
synize锁升级
- OpenCV开发笔记(七十七):相机标定(二):通过棋盘标定计算相机内参矩阵矫正畸变摄像头图像
前言 通过相机图片可以识别出棋盘角点了,这时候我们需要通过角点去计算相机内参矩阵,通过上篇得知畸变的原理,所以我们尽可能要全方位都能获取标定图片,全方位意思是提供的多张图综合起来基本覆盖了相机所有 ...
- 线上RocktMQ重复投递半事务消息故障排查
1. 故障现象 2020-11-18 10:40开始,业务线反馈线上收到大量的重复MQ半事务消息,导致容器资源消耗急剧攀升,经查看MQ日志,发现broker-b的Master服务,报出大量半事务消息回 ...
- private priv 私人 pri=prim first v=self 自己第一
private priv 私人 pri=prim first v=self 自己第一 private v自己-私人的 pri 来自PIE*per,向前,穿过 pri = pre 向前(这么理解也说的过 ...
- struts1之global-forwards
当你的某个转发要经常用,并且要携带某些数据(request)的时候用全局转发,也就是global-forwards,例如我们在分页的时候,或者得到数据列表的时候.. ForwardAction呢,是为 ...