成本函数(cost function)也叫损失函数(loss function),用来定义模型与观测值的误差。模型预测的价格与训练集数据的差异称为残差(residuals)或训练误差(test errors)。

  我们可以通过残差之和最小化实现最佳拟合,也就是说模型预测的值与训练集的数据最接近就是最佳拟合。对模型的拟合度进行评估的函数称为残差平方和(residual sum of squares)成本函数。就是让所有训练数据与模型的残差的平方之和最小。

  

  我们用R方(r-squared)评估预测的效果。R方也叫确定系数(coefficient of determination),表示模型对现实数据拟合的程度。计算R方的方法有几种。一元线性回归中R方等于皮尔逊积矩相关系数(Pearson product moment correlation coefficient 或Pearson's r)的平方。这种方法计算的R方一定介于0~1之间的正数。其他计算方法,包括scikit-learn中的方法,不是用皮尔逊积矩相关系数的平方计算的,因此当模型拟合效果很差的时候R方会是负值。

SStot是方差平方和  SSres是残差的平方和

一元线性回归

X_test = [[8], [9], [11], [16], [12]]
y_test = [[11], [8.5], [15], [18], [11]]
model = LinearRegression()
model.fit(X, y)
model.score(X_test, y_test)

score方法计算R方

多元线性回归

最小二乘的代码

from numpy.linalg import lstsq
print(lstsq(X, y)[0])

多项式回归

一种特殊的多元线性回归方法,增加了指数项(x 的次数大于1)。现实世界中的曲线关系都是通过增加多项式实现的,其实现方式和多元线性回归类似。

\(f(x)=\alpha x^2+\beta_1 x+\beta_2\)

多项式 函数PolynomialFeatures

import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures X_train = [[6], [8], [10], [14], [18]]
y_train = [[7], [9], [13], [17.5], [18]]
X_test = [[6], [8], [11], [16]]
y_test = [[8], [12], [15], [18]]
regressor = LinearRegression()
regressor.fit(X_train, y_train)
xx = np.linspace(0, 26, 100)
yy = regressor.predict(xx.reshape(xx.shape[0], 1))
plt = LRplt.runplt()
plt.plot(X_train, y_train, 'k.')
plt.plot(xx, yy)
quadratic_featurizer = PolynomialFeatures(degree=2)
X_train_quadratic = quadratic_featurizer.fit_transform(X_train)
X_test_quadratic = quadratic_featurizer.transform(X_test)
regressor_quadratic = LinearRegression()
regressor_quadratic.fit(X_train_quadratic, y_train)
xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0], 1))
plt.plot(xx, regressor_quadratic.predict(xx_quadratic), 'r-')
plt.show()
print(X_train)
print(X_train_quadratic)
print(X_test)
print(X_test_quadratic)
print '一元线性回归 r-squared', regressor.score(X_test, y_test)
print '二次回归 r-squared', regressor_quadratic.score(X_test_quadratic, y_test)

多项式比一次的R值更高,效果好一些。

正则化

正则化(Regularization)是用来防止拟合过度的方法。正则化就是用最简单的模型解释数据。(奥卡姆剃刀原理(Occam's razor))

岭回归(Ridge Regression)岭回归增加L2范数项(相关系数向量平方和的平方根)来调整成本函数(残差平方和)

\(R = \sum_{i=1}^{n} ( y_i - x_i^T \beta)^2 +\lambda \sum_{j=1}^{p}\beta_j^2\)

(L0、L1与L2范数参考)

最小收缩和选择算子(Least absolute shrinkage and selection operator,LASSO),增加L1范数项(相关系数向量平方和的平方根)来调整成本函数(残差平方和)

\(R=\sum_{i=1}^{n}( y_i - x_i^T \beta)^2 +\lambda\sum_{j=1}^{p}\beta_j\)

LASSO方法会产生稀疏参数,大多数相关系数会变成0,模型只会保留一小部分特征。而岭回归还是会保留大多数尽可能小的相关系数。当两个变量相关时,LASSO方法会让其中一个变量的相关系数会变成0,而岭回归是将两个系数同时缩小。
scikit-learn还提供了弹性网(elastic net)正则化方法,通过线性组合L1和L2兼具LASSO和岭回归的内容。可以认为这两种方法是弹性网正则化的特例。

梯度下降

梯度下降算法是用来评估函数的局部最小值,

可以用梯度下降法来找出成本函数最小的模型参数值。梯度下降法会在每一步走完后,计算对应位置的导数,然后沿着梯度(变化最快的方向)相反的方向前进。总是垂直于等高线。

但是残差平方和的成本函数是个凸函数,梯度下降可以找到全局最小值,而对于部分存在波峰波谷的函数,只能找到局部的。

梯度下降的重要参数(Learning rate)步长小,迭代就小,步长长迭代就大,根据NG的ML公开课推荐的是按照三倍 来缩放步长0.01,0.03,0.1,0.3。

如果按照每次迭代后用于更新模型参数的训练样本数量划分,有两种梯度下降法。批量梯度下降(Batch gradient descent)每次迭代都用所有训练样本。随机梯度下降(Stochastic gradient descent,SGD)每次迭代都用一个训练样本,这个训练样本是随机选择的。当训练样本较多的时候,随机梯度下降法比批量梯度下降法更快找到最优参数。批量梯度下降法一个训练集只能产生一个结果。而SGD每次运行都会产生不同的结果。SGD也可能找不到最小值,因为升级权重的时候只用一个训练样本。它的近似值通常足够接近最小值,尤其是处理残差平方和这类凸函数的时候。

import numpy as np
from sklearn.datasets import load_boston
from sklearn.linear_model import SGDRegressor
from sklearn.cross_validation import cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
data = load_boston()
#分割测试集和训练集
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target)
#归一化
X_scaler = StandardScaler()
y_scaler = StandardScaler() X_train = X_scaler.fit_transform(X_train)
y_train = y_scaler.fit_transform(y_train)
X_test = X_scaler.transform(X_test)
y_test = y_scaler.transform(y_test) regressor = SGDRegressor(loss='squared_loss')
#交叉验证
scores = cross_val_score(regressor, X_train, y_train, cv=5)
print '交叉验证R方值:', scores
print '交叉验证R方均值:', np.mean(scores)
regressor.fit_transform(X_train, y_train)
print '测试集R方值:', regressor.score(X_test, y_test)

线性回归 Linear Regression的更多相关文章

  1. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  2. 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

    机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示 ...

  3. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  4. 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 I ...

  5. 机器学习方法:回归(一):线性回归Linear regression

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 开一个机器学习方法科普系列:做基础回顾之用,学而时习之:也拿出来与大家分享.数学水平有限,只求易懂,学习与工 ...

  6. 斯坦福CS229机器学习课程笔记 Part1:线性回归 Linear Regression

    机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-sq ...

  7. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  8. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  9. ML 线性回归Linear Regression

    线性回归 Linear Regression MOOC机器学习课程学习笔记 1 单变量线性回归Linear Regression with One Variable 1.1 模型表达Model Rep ...

  10. TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现

    此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...

随机推荐

  1. js获取网页高度

    网页可见区域宽: document.body.clientWidth网页可见区域高: document.body.clientHeight网页可见区域宽: document.body.offsetWi ...

  2. IOS开发基础知识--碎片34

    1:第三方插件SKSTableView在IOS7.1.1出现闪退的问题 解决办法,修改其内部源代码: (NSInteger)subRow { id indexpath = [NSIndexPath c ...

  3. Android Gradle Build Error:Some file crunching failed, see logs for details解决办法

    转载请标明出处: http://www.cnblogs.com/why168888/p/5925756.html 本文出自:[Edwin博客园] 错误日志:Error:java.lang.Runtim ...

  4. 【代码笔记】iOS-图文混排(HBLabelDemo)

    一,效果图. 二,工程图. 三,代码. ViewController.h #import <UIKit/UIKit.h> @interface ViewController : UIVie ...

  5. linux数据误删后,灾难性数据备份与数据还原

    一 准备工作 #rm –rf  误删重要数据怎么办? 1. 要冷静,通知停止该服务器一切操作 2. 查看被删除文件所在分区 #mount 3. 将该分区设置为只读 #mount -r -n -o re ...

  6. 使用memadmin可视化监视我们的memcache

    相信还是有很多项目使用memcache,可能有些人说有点out了,但是呢??? 项目上的东西不是你想换就能换的...谁都想多一事不如少 一事,大面积更换之后所面临的未知风险可能让你无法承受,但是呢, ...

  7. SQL Server高级查询

    简介 关于数据库,我们经常会听说"增查删改"之类的词语,听起来很简单,但是如果想要准确的获取到需要的数据的话,还是要花点功夫的.下面由我来和大家谈谈高级查询的用法以及和普通查询的区 ...

  8. Function.prototype.call 和 Function.prototype.apply 的区别

    call和apply函数是function函数的基本属性,都可以用于更改函数对象和传递参数,是前端工程师常用的函数.具体使用方法请参考以下案列: 例如: 申明函数: var fn = function ...

  9. Python实用环境pyenv搭建教程

    实验系统:kubuntu-15.10-desktop-amd64 关于pyenv的介绍:一般在操作系统中我们会安装多个Python版本,在*nix系统中一般默认就自带了Python2与Python3两 ...

  10. Struts与Struts2的区别

    Struts与Struts2的区别 首先看一张Struts2的发展路线图:       从Struts2的发展过程来看,Struts2继承了Struts与Webwork的特性,形成了新的框架.但是它的 ...