成本函数(cost function)也叫损失函数(loss function),用来定义模型与观测值的误差。模型预测的价格与训练集数据的差异称为残差(residuals)或训练误差(test errors)。

  我们可以通过残差之和最小化实现最佳拟合,也就是说模型预测的值与训练集的数据最接近就是最佳拟合。对模型的拟合度进行评估的函数称为残差平方和(residual sum of squares)成本函数。就是让所有训练数据与模型的残差的平方之和最小。

  

  我们用R方(r-squared)评估预测的效果。R方也叫确定系数(coefficient of determination),表示模型对现实数据拟合的程度。计算R方的方法有几种。一元线性回归中R方等于皮尔逊积矩相关系数(Pearson product moment correlation coefficient 或Pearson's r)的平方。这种方法计算的R方一定介于0~1之间的正数。其他计算方法,包括scikit-learn中的方法,不是用皮尔逊积矩相关系数的平方计算的,因此当模型拟合效果很差的时候R方会是负值。

SStot是方差平方和  SSres是残差的平方和

一元线性回归

X_test = [[8], [9], [11], [16], [12]]
y_test = [[11], [8.5], [15], [18], [11]]
model = LinearRegression()
model.fit(X, y)
model.score(X_test, y_test)

score方法计算R方

多元线性回归

最小二乘的代码

from numpy.linalg import lstsq
print(lstsq(X, y)[0])

多项式回归

一种特殊的多元线性回归方法,增加了指数项(x 的次数大于1)。现实世界中的曲线关系都是通过增加多项式实现的,其实现方式和多元线性回归类似。

\(f(x)=\alpha x^2+\beta_1 x+\beta_2\)

多项式 函数PolynomialFeatures

import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures X_train = [[6], [8], [10], [14], [18]]
y_train = [[7], [9], [13], [17.5], [18]]
X_test = [[6], [8], [11], [16]]
y_test = [[8], [12], [15], [18]]
regressor = LinearRegression()
regressor.fit(X_train, y_train)
xx = np.linspace(0, 26, 100)
yy = regressor.predict(xx.reshape(xx.shape[0], 1))
plt = LRplt.runplt()
plt.plot(X_train, y_train, 'k.')
plt.plot(xx, yy)
quadratic_featurizer = PolynomialFeatures(degree=2)
X_train_quadratic = quadratic_featurizer.fit_transform(X_train)
X_test_quadratic = quadratic_featurizer.transform(X_test)
regressor_quadratic = LinearRegression()
regressor_quadratic.fit(X_train_quadratic, y_train)
xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0], 1))
plt.plot(xx, regressor_quadratic.predict(xx_quadratic), 'r-')
plt.show()
print(X_train)
print(X_train_quadratic)
print(X_test)
print(X_test_quadratic)
print '一元线性回归 r-squared', regressor.score(X_test, y_test)
print '二次回归 r-squared', regressor_quadratic.score(X_test_quadratic, y_test)

多项式比一次的R值更高,效果好一些。

正则化

正则化(Regularization)是用来防止拟合过度的方法。正则化就是用最简单的模型解释数据。(奥卡姆剃刀原理(Occam's razor))

岭回归(Ridge Regression)岭回归增加L2范数项(相关系数向量平方和的平方根)来调整成本函数(残差平方和)

\(R = \sum_{i=1}^{n} ( y_i - x_i^T \beta)^2 +\lambda \sum_{j=1}^{p}\beta_j^2\)

(L0、L1与L2范数参考)

最小收缩和选择算子(Least absolute shrinkage and selection operator,LASSO),增加L1范数项(相关系数向量平方和的平方根)来调整成本函数(残差平方和)

\(R=\sum_{i=1}^{n}( y_i - x_i^T \beta)^2 +\lambda\sum_{j=1}^{p}\beta_j\)

LASSO方法会产生稀疏参数,大多数相关系数会变成0,模型只会保留一小部分特征。而岭回归还是会保留大多数尽可能小的相关系数。当两个变量相关时,LASSO方法会让其中一个变量的相关系数会变成0,而岭回归是将两个系数同时缩小。
scikit-learn还提供了弹性网(elastic net)正则化方法,通过线性组合L1和L2兼具LASSO和岭回归的内容。可以认为这两种方法是弹性网正则化的特例。

梯度下降

梯度下降算法是用来评估函数的局部最小值,

可以用梯度下降法来找出成本函数最小的模型参数值。梯度下降法会在每一步走完后,计算对应位置的导数,然后沿着梯度(变化最快的方向)相反的方向前进。总是垂直于等高线。

但是残差平方和的成本函数是个凸函数,梯度下降可以找到全局最小值,而对于部分存在波峰波谷的函数,只能找到局部的。

梯度下降的重要参数(Learning rate)步长小,迭代就小,步长长迭代就大,根据NG的ML公开课推荐的是按照三倍 来缩放步长0.01,0.03,0.1,0.3。

如果按照每次迭代后用于更新模型参数的训练样本数量划分,有两种梯度下降法。批量梯度下降(Batch gradient descent)每次迭代都用所有训练样本。随机梯度下降(Stochastic gradient descent,SGD)每次迭代都用一个训练样本,这个训练样本是随机选择的。当训练样本较多的时候,随机梯度下降法比批量梯度下降法更快找到最优参数。批量梯度下降法一个训练集只能产生一个结果。而SGD每次运行都会产生不同的结果。SGD也可能找不到最小值,因为升级权重的时候只用一个训练样本。它的近似值通常足够接近最小值,尤其是处理残差平方和这类凸函数的时候。

import numpy as np
from sklearn.datasets import load_boston
from sklearn.linear_model import SGDRegressor
from sklearn.cross_validation import cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
data = load_boston()
#分割测试集和训练集
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target)
#归一化
X_scaler = StandardScaler()
y_scaler = StandardScaler() X_train = X_scaler.fit_transform(X_train)
y_train = y_scaler.fit_transform(y_train)
X_test = X_scaler.transform(X_test)
y_test = y_scaler.transform(y_test) regressor = SGDRegressor(loss='squared_loss')
#交叉验证
scores = cross_val_score(regressor, X_train, y_train, cv=5)
print '交叉验证R方值:', scores
print '交叉验证R方均值:', np.mean(scores)
regressor.fit_transform(X_train, y_train)
print '测试集R方值:', regressor.score(X_test, y_test)

线性回归 Linear Regression的更多相关文章

  1. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  2. 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

    机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示 ...

  3. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  4. 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 I ...

  5. 机器学习方法:回归(一):线性回归Linear regression

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 开一个机器学习方法科普系列:做基础回顾之用,学而时习之:也拿出来与大家分享.数学水平有限,只求易懂,学习与工 ...

  6. 斯坦福CS229机器学习课程笔记 Part1:线性回归 Linear Regression

    机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-sq ...

  7. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  8. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  9. ML 线性回归Linear Regression

    线性回归 Linear Regression MOOC机器学习课程学习笔记 1 单变量线性回归Linear Regression with One Variable 1.1 模型表达Model Rep ...

  10. TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现

    此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...

随机推荐

  1. ios 显示缓存数据库

    IOS8以前版本, 如果是模拟器的话, 在这个路径中找到你的应用:/Users/你的用户名/Library/Application Support/iPhone Simulator/5.1/Appli ...

  2. 【代码笔记】iOS-下拉菜单

    一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> @interface RootViewController ...

  3. iOS 学习 - 17.Socket

    Socket 是应用层与 TCP / IP 协议通信的中间软件抽象层,它是一组接口   TCP:面向连接.传输可靠(保证数据正确性,保证数据顺序).用于传输大量数据(流模式).速度慢,建立连接需要开销 ...

  4. 适配iOS 10以及Xcode 8(转载)

    一.证书管理 用Xcode8打开工程后,比较明显的就是下图了,这个是苹果的新特性,可以帮助我们自动管理证书.建议大家勾选这个Automatically manage signing(Ps.但是在bea ...

  5. width 、 height 与 box-sizing : border-box ,content-box 的关系

    默认 width .height的 content-box 的宽高. box-sizing 经常用来设置 width.height指定的区域 box-sizing 经常用做一些自适应的布局. 语法: ...

  6. Linux服务器oraclejdk与openjdk共存并配置JavaEE开发环境

    由于本人学业的需要,需要在linux中搭建JavaEE开发环境,与windows的同学协同开发. JDK 由于fedora默认使用openjdk,移除多多少少会出现点问题,由于很多开源软件默认使用到它 ...

  7. String.SubString

    1理论 String.SubString(int index,int length) index:开始位置,从0开始 length:你要取的子字符串的长度 2实验   string my = &quo ...

  8. 执行openstack命令报错【You must provide a username via either -...】

    openstack环境搭建好后,openstack的服务都启动了,当执行openstack命令时如nova service list报如下错误 You must provide a username ...

  9. 使用好压(HaoZip)软件打包EverEdit制作安装程序

    最近使用EverEdit,使用原始的安装程序安装后,需要重新安装插件,对配置文件进行了修改,定制了工具栏.将安装后的程序目录进行打包,制作新的安装包,便于携带. 以下为打包制作过程: 打包原料:Eve ...

  10. 利用firebug调试功能辅助了解闭包和this

    算一算,有段时间没写博客. 上午的时候翻看以前收藏的一个系列博文<深入理解javascript原型和闭包>, 讲闭包那节:http://www.cnblogs.com/wangfupeng ...