Traditional Language Model
Traditional Language Model通常用于回答下述问题:
How likely is a string of English words good English ?
\(p_{LM}(\)the house is small\()\ge p_{LM}(\) small the is house\()\)
\(p_{LM}(\)I am going home\()\ge p_{LM}(\)I am going house\()\)
生成该句子 \(W=w_1, w_2, w_3, w_4...w_n\) 的概率为\(p(W)\) 如何计算?
我们可以使用 chain rule 将该句子分解(decompose):
\[\begin{split}p(w_1, w_2, w_3...w_n) &=p(w_1) * p(w_2|w_1)*p(w_3|w_1,w_2)\cdots* p(w_n| w_1, w_2\cdots w_{n-1})\end{split}\]
我们发现 \(p(w_n| w_1, w_2\cdots w_{n-1})\)需要很多前置项\(w_1, w_2\cdots w_{n-1}\),在数据集中很难计算,十分稀疏(sparse)。
Markov 假设
- 当前词只和前面的词相关;
- 只和前面的\(k\)个单词相关
这样表示就相对简便。
uni-gram model
\[P(w_i|w_0\cdots w_{i−1})\approx P(w_i)\]
Bi-gram model
\[P(w_i|w_0\cdots w_{i−1})\approx P(w_i|w_{i-1})\]
Tri-gram model
\[P(w_i|w_0\cdots w_{i−1})\approx P(w_i|w_{i-1},w_{i-2})\]
例如,2-gram的 language model:
\[p(w_1, w_2, w_3,\cdots w_n)\approx p(w_1) * p(w_2|w_1) * p(w_3|w_2) \cdots p(w_n|w_{n-1})\]
n-gram probability estimation
2-gram概率估计
\[p(w_2|w_1)=\frac{count(w_1,w_2)}{count(w_1)}\]
所以我们只需要找一个大词库,然后统计\(w_1\)出现的次数和\(w_1,w_2\)共同出现的次数,即可。
Linear interpolation
Bigram: \(P(w_i∣w_{i−1})=\lambda_2 P(w_i∣w_{i−1})+ (1−λ_2) P(w_i)\)
Unigram: \(P(w_i)=\lambda_1 P(w_i)+(1-\lambda_1)\frac{1}{N}\)
Traditional Language Model的更多相关文章
- [IR] Tolerant Retrieval & Spelling Correction & Language Model
Dictionary不一定是个list,它可以是多种形式. 放弃Hash的原因: 通常,tree是比较适合的结构. From: http://www.cnblogs.com/v-July-v/arch ...
- 用CNTK搞深度学习 (二) 训练基于RNN的自然语言模型 ( language model )
前一篇文章 用 CNTK 搞深度学习 (一) 入门 介绍了用CNTK构建简单前向神经网络的例子.现在假设读者已经懂得了使用CNTK的基本方法.现在我们做一个稍微复杂一点,也是自然语言挖掘中很火 ...
- A Neural Probabilistic Language Model
A Neural Probabilistic Language Model,这篇论文是Begio等人在2003年发表的,可以说是词表示的鼻祖.在这里给出简要的译文 A Neural Probabili ...
- tensorflow world language model
上文提到了pytorch里的world language model,那么怎么能不说tensorflow的实现呢,还是以tensorflow ptb的代码为例说说. 地址: https://githu ...
- 论文分享|《Universal Language Model Fine-tuning for Text Classificatio》
https://www.sohu.com/a/233269391_395209 本周我们要分享的论文是<Universal Language Model Fine-tuning for Text ...
- language model ——tensorflow 之RNN
代码结构 tf的代码看多了之后就知道其实官方代码的这个结构并不好: graph的构建和训练部分放在了一个文件中,至少也应该分开成model.py和train.py两个文件,model.py中只有一个P ...
- NLP问题特征表达基础 - 语言模型(Language Model)发展演化历程讨论
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发 ...
- 将迁移学习用于文本分类 《 Universal Language Model Fine-tuning for Text Classification》
将迁移学习用于文本分类 < Universal Language Model Fine-tuning for Text Classification> 2018-07-27 20:07:4 ...
- #论文阅读# Universial language model fine-tuing for text classification
论文链接:https://aclweb.org/anthology/P18-1031 对文章内容的总结 文章研究了一些在general corous上pretrain LM,然后把得到的model t ...
随机推荐
- Ajax中Get请求与Post请求的区别
Get请求和Post请求的区别 1.使用Get请求时,参数在URL中显示,而使用Post方式,则不会显示出来 2.使用Get请求发送数据量小,Post请求发送数据量大 例子 页面的HTML代码: &l ...
- MongoDB学习笔记~批量插入方法的实现
回到目录 批量插入在EF时代大叔就自己封装过,原理是将多次SQL连接和多次向SQL发送的指令减少到1次,或者1000条数据1次,而对于EF产生的语句来说,这无疑是性能高效的,因为EF这边在处理时,每个 ...
- Zookeeper(一)从抽屉算法到Quorum (NRW)算法
一.抽屉算法 抽屉算法,又名鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则.它是组合数学中一个重要的原理. 具体算法讲的是: 第一抽屉算法: 如果 ...
- kattle 发送post请求
一.简介 kattle是一款国外开源的ETL工具,纯java编写,可以在Window.Linux.Unix上运行,数据抽取高效稳定.它允许你管理来自不同数据库的数据,通过提供一个图形化的用户环境来描述 ...
- 我心中的MySQL DBA
原文网址链接:http://wangwei007.blog.51cto.com/68019/1718311 MySQL是一个跨平台的开源关系型数据库管理系统,目前MySQL被广泛地应用在Interne ...
- debian/ubuntu安装桌面环境
apt-get install xorg apt-get install gnome 然后startx ubuntu 安装Gnome桌面 1.安装全部桌面环境,其实Ubuntu系列桌面实际上有几种桌面 ...
- SVN 提交失败: permission denied - txn-current-lock
执行以下命令即可 sudo chown -R www-data:subversion myproject sudo chmod -R g+rws myproject
- Sublime Text 技巧
让sublime text2支持中文 安装Sublime Package Control 在Sublime Text 2上用Ctrl+-打开控制台并在里面输入以下代码,Sublime Text 2就会 ...
- 《InsideUE4》-9-GamePlay架构(八)Player
你们对力量一无所知 引言 回顾上文,我们谈完了World和Level级别的逻辑操纵控制,如同分离组合的AController一样,UE在World的层次上也采用了一个分离的AGameMode来抽离了游 ...
- Utils
import org.apache.commons.beanutils.BeanUtils; import org.apache.commons.collections.CollectionUtils ...