摘要:本篇文章将硬核讲解M-SQL:一种将自然语言转换为SQL语句的多任务表示学习方法的相关论文。

本文分享自华为云社区《【云驻共创】M-SQL,一种超强的多任务表示学习方法,你值得拥有》,作者: 启明。

数据集整体介绍

定义介绍

国际惯例,先来一段定(bai)义(du)介(bai)绍(ke):Text to SQL,顾名思义,就是在给定数据库(或表)的前提下,根据用户的提问,产生SQL语句。其数学描述如下:

令X表示用户的自然语言提问,D表示与提问相关的数据库(或表),Y表示其对应的SQL语句。

SQL语句生成任务可以表述为:对于每一组独立的(X,D,Y),将(X,D)映射到对应的Y。

用一个大家熟悉的场景为例。假设我们有一张学生信息表,我们可以用自然语言提问:大于18岁的学生都有谁,模型需要返回一个与之相关的SQL语句,那么就是:

SELECT 姓名 FROM 学生信息 WHERE 年龄 > 18

场景分类

Text to SQL有很多种分类,其中一种是按问题分类

一种是上下文无关的(提问之间不存在关联):Spider

一种是上下文相关的(两个提问之间存在一定关联):SparC

“上下文无关”是指提问之间没有任何的关联,而“上下文相关”是前后两个提问之间,存在一些指代关系或者说存在一定的关联。

同样,我们举一个简单的例子来说明:

提问1:有预约的医生ID是什么?

SELECT physician FROM appointment

提问2:他们的名字是什么?

SELECT T2.name FROM appointment AS T1 JOIN physician AS T2 ON T1.Physician = T2.EmpoyeeID

以上就是一个上下文相关的例子,第一句的确定医生ID,第二句根据医生ID确定医生名字。

另一种是按领域分类:单领域 or 多领域

如果所有的提问都是有关于航空方面的,这就是一个单领域的数据集。而跨领域数据集,则是在训练集当中可能有很多种领域,在测试集当中也有很多种领域,但是训练集中的领域和测试集中的领域不重合,这就要求我们的模型具有一定的泛化能力。

第三种是按照数据库进行分类

单表数据库:WikiSQL,其提问只针对一个表,或者是它所针对数据库当中只有一个表

多表数据库:Spider,其提问针对的数据库当中有许多个表,它所产生的 SQL语句可能涉及到多个表之间的连接。

第四种种分类是按照标注类型进行分类

最终结果:WikiTableQuestion

SQL语句:WikiSQL、Spider

有一些数据集没有给出相关的SQL语句,而是直接给出了一个结果。以前面的例子为例,“大于18岁的学生都有谁”,输出有可能是给出SQL语句,也有可能是最终结果:把这些人名都给列出来,而没有给出SQL语句,这其中涉及到的“弱监督学习”,本次不做具体讲解。

TableQA 数据集

本次要讲解的论文所采用的是一个TableQA数据集,它也是一个单表数据。也就是每一个提问都只针对一个表进行提问。TableQA和WikiSQL有有很多相似之处,但是也有一定的差异,如下图所示:

论文概述

介绍完数据集之后,我们来对论文中所提出的模型进行一个简单的介绍。

首先来思考这样一个问题:通过自然语言生成SQL语可以有什么方法?其实一个最简单的思路:输入端是自然语言句子,输出端是与之对应的SQL语句(按照SQL语句按照一个token一个token进行生成)。

比如说我们前面那个例子,Encoder是“大于18岁的学生都有谁“,输出端是SELECT name FROM XX表 Y条件。

这个方法很简单,但是也伴随着一些问题:SQL语句是结构化的查询语言,它是具备一定的结构的,这和一般的语言生成任务是有一定差别的。

对于一般的语言生成任务来说,如果变更其中的一两个词,可能它的语义不会发生太大变化。但是对于 SQL语句来说,如果某个词不一样了,那么其就可能就没有办法继续执行。所以我们需要利用好SQL语句内部的一些语法信息,也就是结构信息。按照它的结构来进行生成,这就是论文当中所提出来的,按照 SQL的框架来进行生成。

M-SQL

因为TableQA数据集只针对单表,相当于From字句可以省略。大体可以分成两个部分,一部分是 Select子句,一部分是 Where子句。

其中Select的子句当中有两个部分:一个是所选取的表的名称,另一个是聚合操作。比如说我们要求某一列的最大值、最小值或者是对某一列进行求和,就需要聚合操作来进行。

对于Where子句这一部分,我们详细介绍一下:

$WOP:where 条件连接符(and /or / Null)

$COLUMN:数据库中的列名

$AGG:对选取列的操作(Null, AVG, MAX, MIN, COUNT, SUM)

$OP:where子句中的列值

根据对TableQA数据集进行统计,限定select中最多出现2列、where中最多有3个条件:

SELECT ($AGG $COLUMN)*

WHERE $WOP ($COLUMN $OP $VALUE)*

M-SQL模型

此模型大致可从下往上可以分成三块。

Encoder:对输入进行一个编码;采用了一个简单的bert模型,版本是wwwm-ext。wwm意味着其使用的是一个全词覆盖的方式,而ext则扩充了它的训练集并使它的训练部署有所增加。

其输入部分包括:问题、列名。同样以前面“大于18岁的学生都有谁”为例,可以看到上图所示,T1至TL,后面跟着的是所提问的表当中所出现的每一列它的列名,比如说这个表当中可能有姓名、学号或者年龄。另外,与bert输入不同的是它用 [XLS]去替换了[CLS]。

列表示:对于列的表示进行增强;由于每一列当中它可能会由多个token构成,比如说,一列的名字叫“姓名”,其可能是两个字,这两个字分别有两个embeding,那么如何把这两个embeding给它合并成一个embeding作为列的表示呢?我们可以用前面的 XLS的表示来对列的表示进行增强,具体的做法如下:

先通过前面 XLS的表示,对这一列当中所有的token表示进行计算attention,attention计算出来之后再加上前面 XLS表示的 embeding,这两个之和就构成了这一列的增强的表示。

经过上述步骤之后,我们就得到了问题当中,每一个token的表示,以及表格当中每一列的表示。

子模型:8个子模型及对这8个子模型进行1个多任务的学习。

前面提到,我们可以将SQL语句分割成不同的部分,然后每一部分分别进行生成,于是可以得出8个子任务,分别是:

  • Select列数
  • Where列数和连接符
  • Select列
  • Select列操作
  • Where列
  • Where每列的运算
  • 值抽取
  • 值匹配

接下来,我们对这8个子任务分别介绍一下它们的做法。

任务一:S-num:Select中出现的列数。[1、2](2分类)

首先是Select当中出现的列数。对于TableQA数据集,Select当中出现列数只可能是一列或者是两列,因此我们可以当做是一个二分类的问题:利用 XLS的 embeding做线性变换,然后过sigmoid的得到它的概率。

任务二:w-num-op:Where中的连接符和条件数。[null-1、and-1、or-1、and-2、or-2、and-3、or-3](7分类)

第二个任务是Where当中出现的连接符和条件数。所谓“连接符”,指的是“And”还是“or”等;条件的个数,指的是Where当中所出现的“>”、“<”、“=”等等条件的个数。我们可以将他们分成了7个类别,“-”前面的就是连接符,“-”后面的这些就是条件的个数。当然也可以把这两个任务进行分开,但是如果把这两个任务进行分开的话,效果与两个任务一起做相比,会大打折扣。

那么总共是有7个类型,就可以看成是7分类的问题,因此还是 XLS表示过一个线性变换,然后再经过softmax,就可以得到这7个类别上的概率分布。

第三个和第四个子任务是Select字句和Where字句当中出现的列。我们前面已经预测了Select当中的例数,以及Where当中的例数,那么在这一部分我们分别预测每一例所出现的概率即可。

任务三:S-col:Select 中出现的列

Select中出现的列:利用我们之前每一列得到增强的表示,经过一个线性变换,再过一个softmax就可以得到这一列所出现的概率。

任务四:W-col:Where 条件中出现的列

对Where条件当中出现的列:同样,利用不同的线性变化来进行得到这一列它所出现的概率。

任务五:S-col-agg:Select 中出现的列的操作符

  • [Null, AVG, MAX, MIN, COUNT, SUM](6分类)

第五个任务是Select当中出现的这些操作符,这些操作符也被称为是聚合操作。比如说,我们可以求这一列当中所有数据的最大值、最小值或者求平均、求和等等。

在TableQA当中,5种操作符加上NULL一共是6种,我们可以将其看到是一个6分类的问题。同样,我们对每一列的增强的表示做一个线性变换,然后再经过softmax就可以得到每一类的概率分布。

任务六:W-col-op:Where 条件中出现的列对应的条件运算符

  • [> / < / == / !=](4分类)

对于Where条件当中出现的这些运算符也是一样。这些运算符,包括这一类大于一个数或者小于一个数,或者是等于某个值,或者不等于某个值,一共是4类,我们可以看作是一个4分类的问题。做法和之前的Select当中的运算符一致,也是给列的增强表示过一个线性映射再经过softmax得到4类的每一类的概率分布,从中的选取最大的作为这一列的运算符。

最后两个子任务就是服务于条件值预测。同样以我们前面的例子为例,“大于18岁的学生都有谁”。最后的结果应该是Where条件当中有一个age > 18,那么我们18应该怎样获得呢?作者就问题给它拆成了两个子任务:

任务七:从问题中抽取可能是值的短语

  • 使用0/1对问题中的Token进行标记(1表示值,0表示非值),每一组连续的

1标记的token作为一个整体

第一步就是从问题当中抽取出有可能是值的短语。比如说“大于18岁的学生都有谁”这个问题,那么这个子任务就是把“18”从问题当中进行抽出来。我们可以采用的方法是使用0和1对问题当中所出现的token进行标记,比如说“大于18岁都有谁”中的“18”,我们就把它标记成1,然后其他所有的token就把它标注上0,并对于问题当中我们一个token的表述过一个线性变换,使用sigmoid的来预测它到底是1还是0。

任务八:将抽取出的短语和Where中出现的列进行匹配

在任务七的基础上,我们需要将抽取出来的短语与where当中所出现的列进行匹配。

在前一个步骤,我们已经把“18”给它打上1的标签了,因此也就生成了“18”这个token序列。它是一个可能会出现在某一个条件当中的value,但是它会出现到哪一列之后,是这一步所要确定的事。

将取出来的短语与Where当中出现的列进行匹配,如果短语当中它是由多个token构成的,就把所有的token的text表示求一个平均。如下图,此公式相当于是对短语与where当中出现的列求一个相似度,然后再过一个sigmoid。前面这个u是一个可学习的参数,过一个sigmoid就可以得到短语与列是否匹配:如果匹配就把短语作为列的值,比如说18就跟age匹配了,然后我们就可以写age > 18。

Execution-Guided Decoding

我们已经对上述8个子任务做了简单的介绍。通过这8个子任务,我们就可以得到一条SQL语句,并且保证它是符合了语法规则的。但是它所产生的SQL语句有可能还是不能被执行。

因为SQL语句的内部可能还存在一些限制条件:

  • SELECT子句中如果出现string类型的列,则对应的操作不能是’sum’, ‘min’, ‘max’
  • WHERE子句中如果出现string类型的列,则对应的操作不能是‘<’, ‘>’
  • SELECT子句和WHERE子句中出现的列互不相同(分析数据集得知)

在这些限制下,我们可以采用Execution-Guided Decoding的方法:在decode的过程当中,去掉那些不能被执行的SQL语句,比如说SQL语句执行出来的结果是空,或者压根就不能被执行,从而被会报错,这些SQL语句我们就可以直接被抛弃,而选取符合上述条件的概率最大的SQL语句。

实验结果

接下来是实验结果。

首先简单介绍一下其所采用的评价指标,分别是LX、X还有MX。

LX,就是它的逻辑形式的准确率。如果所生成的SQL语句和标准答案的SQL语句完全一致,那么上面这两个操作正确;如果有一点不一样,比如说“>”写错了,或者是这一列选错了,那么这个例子即错误。

X,就是它的执行结果的准确率。如果两条SQL语句,可能它的逻辑形式不一样(这两个SQL可能存在一些差别),但它的执行结果是一致的,那么也算预测正确。

MX,是前面LX和X的一个平均。它有两个模型,一个是单个模型,一个是集成模型(后面的Ens)。通过Ensemble对多次训练的结果进行集成,最终得到一个更好的结果。从图中我们可以看到它比之前几种模型的结果都要好。

因为之前的模型都是基于WikiSQL进行实现的。我们所采用的TableQA与WikiSQL有一些不同,并且比WikiSQL要更难一些,所以之前的这些模型在TableQA对数据集上的效果并不是很好。

子任务的性能

下图对8个不同的子模型的性能做了对比:

我们可以看到在每一个子模型上,它的效果都是非常不错的,现在经过Ensemble之后就可以达到更好的效果。

消融实验

在实验的最后一部分我们做了一系列的消融实验。

从实验结果我们可以看出,使用BERT-wwm-ext的版本比 BERT-base效果要好,使用XLS作为前置比CLS作为前置的效果要好。图中更下面部分是所使用的一些值的抽取的方法,以及一些值匹配的方法,我们在下面给大家作更详细的介绍。

复现中的细节处理

接下来,我们将介绍在复现过程当中的一些细节处理。

首先是数据预处理的部分。对于这个数据集来说,它的数据是不太规范的,有可能会出现以下情况(括号中表示歧义部分):

  • 数字:哪些城市上一周成交一手房超十五万平? (十五,15)
  • 年份:你知道10年的土地成交面积吗? (10年,2010)
  • 单位:哪些城市最近一周新盘库存超过5万套? (5万,50000)
  • 日期:哪个公司于18年12月28号成立? ( 18年12月28号,2018/12/28 )
  • 同义:你能帮我算算芒果这些剧的播放量之和是多少吗?(芒果,芒果TV)

前面几个问题,可以直接按照一定的规则来进行转换;而后面这些可以通过到数据库当中去找相关的品类词做一个替换。

值的抽取

在“值抽取”这一部分的,我们尝试了很多种方法,比如说bert+crf的方法,bert+bilstm+crf,以及bert+半指针的方法。最终所采用的还是0/1标记的方法,因为它的效果是最好的。

  • bert + crf,val_acc: 0.8785
  • bert + bilstm + crf,val_acc: 0.8801
  • bert + 半指针,val_acc: 0.8891
  • bert + 0/1 标记,val_acc: 0.8922

0/1的方式是如何实现的呢?我们以问题是“青秀南城百货有限公司在哪?”为例来详细讲解一下。

query:青秀南城百货有限公司在哪?

bert_tokenizer:[‘[XLS]’, ‘青’, ‘秀’, ‘南’, ‘城’, ‘百’, ‘货’, ‘有’, ‘限’, ‘公’, ‘司’, ‘在’, ‘哪’, ‘?’, ‘[SEP]’]

value:青秀南城百货有限公司

tag:[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]

首先对此问题进行Tokenizer,然后得到token序列,如果值“青秀南城百货有限公司”出现在SQL语句中,就把这些token给标记成1;对于其他的没有在SQL语句当中出现的,就标记成0。

细节处理

Value检索

由于在value抽取的时候,抽取出来的value可能不太规范,或者是问题当中和数据库当中出现的不太一致。比如说下图中的“人人”与“人人网”:

Query1:人人周涨跌幅是多少?

Value:人人

在这种情况下,我们就需要将 value与 SQL这一列当中出现的所有的值做一个检索,选出与之最接近的一个词作为最终的 value。那么如果检索,我们可以选的方法也很多,比如说rouge-L的匹配方式,以及几种机器学习的方法:逻辑回归、SVR以及贝叶斯。通过效果对比,我们可以发现,逻辑回归是最好的方式,其准确度是97%。

Table-Column 信息增强:

最后一部分,使用表的内容来对列的表示进行增强。

如上图,比如说地区这一类,从中随机选取一个列值,比如说“广西”,我们这一列就表示成“地区, 广西”这一个整体就作为这一列的一个表示,并把它送到input端,然后再进一步的获得列的表示。通过这种方式对于列进行增强,最终可以获得0.4的效果提升。

复现中的问题及建议

1、数据集不规范,建议抽取选取部分规范的数据进行训练和预测;

2、不要从0开始复现,可以基于现有的模型,参考现有的代码。

M-SQL:一种将自然语言转换为SQL语句的多任务表示学习方法

查看本期论文解读视频、算法链接,请点击:

https://marketplace.huaweicloud.com/markets/aihub/article/detail/?content_id=d5f27a62-fc93-43cb-813b-6bb5c5eec068

点击关注,第一时间了解华为云新鲜技术~

M-SQL:超强的多任务表示学习方法的更多相关文章

  1. IIS安全工具UrlScan介绍 ASP.NET 两种超强SQL 注入免费解决方案( 基于IIS,使用免费工具) 批改或隐藏IIS7.5的Server头信息 移除X-Powered-By,MVC,ASP.NET_SessionId 的 HTTP头或者cookie名称

    微软给了我们一个很好的工具用来使IIS安全的运行-------UrlScan,下面是它的配置文件介绍 [options]UseAllowVerbs=1                ; 若为1,则使用 ...

  2. SQL Server代码的一种学习方法

    使用SQL Server Management Studio的操作过程中,界面上方都可以生成sql脚本代码. 如新建数据库时: CREATE DATABASE [db_New] ON PRIMARY ...

  3. sql 子查询stuff功能(同一个人的多任务,多领域成为字符串)

    USE [erp2015] GO /****** Object: StoredProcedure [dbo].[GetUser] Script Date: 03/14/2015 13:27:04 ** ...

  4. SQL语句操作数据与一些函数使用的丰富数据库

    数据库有多重要,其实不用我说,但该怎么运用好数据库下SQL语句与其它的如“函数”等等,那就需要我们大家多多去练习并总结其中的窍门,或许你的总结没那么好,担只要你的练习足够多,就算那不是窍门,那也将是你 ...

  5. Microsoft SQL Server 数据库服务器管理维护角色

    固定服务器角色: 按照从最低级别的角色(bulkadmin)到最高级别的角色(sysadmin)的顺序进行描述: Bulkadmin:这个服务器角色的成员可以运行BULK INSERT语句.这条语句允 ...

  6. [转]Bat脚本处理ftp超强案例解说

    Bat脚本处理ftp超强案例解说 转自:http://369369.blog.51cto.com/319630/842341   前言:   公司有几百台windows服务器,每次程序更新,如果是一台 ...

  7. PL/SQL Block Structure

    [顶]ORACLE PL/SQL编程详解之二: PL/SQL块结构和组成元素(为山九仞,岂一日之功) 继上四篇:ORACLE PL/SQL编程之八:把触发器说透                ORAC ...

  8. 如何用SQL语句查询Excel数据?

    如何用SQL语句查询Excel数据?Q:如何用SQL语句查询Excel数据? A:下列语句可在SQL SERVER中查询Excel工作表中的数据. 2007和2010版本: SELECT*FROMOp ...

  9. NPOI利用多任务模式分批写入多个Excel

    接上文NPOI大数据分批写入同个Excel,这次是利用task多任务同时写入到多个Excel. Form2.cs private void btnExport_Click(object sender, ...

  10. Bat脚本处理ftp超强案例解说

    Bat脚本处理ftp超强案例解说 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://369369.blog.51cto.com/31 ...

随机推荐

  1. zabbix监控Tomcat/JVM 实例性能

    1.背景 zabbix-4.0 环境已部署好 JDK .Tomcat环境已部署好 2.配置Tomcat JMX 编辑catalina.sh加入以下配置 # vim /usr/local/tomcat/ ...

  2. Jenkins相关概念

    1,Jenkins相关工具概念: 要熟练掌握Jenkins持续集成的配置.使用和管理,需要了解相关的概念.例如代码开发.编译.打包.构建等名称,常见的代码相关概念包括:JDK.JAVA.MAKE.AN ...

  3. 子组件emit 父组件方法,成功后回调执行子组件方法

    场景: 父组件 update方法 子组件 确定按钮  getlist 刷新列表 子组件点击确定按钮,调用父组件新增接口,新增成功以后,子组件列表刷新 子组件: emit("confirmPa ...

  4. HarmonyOS UI 开发

    引言 HarmonyOS 提供了强大的 UI 开发工具和组件,使开发者能够创建吸引人的用户界面.本章将详细介绍在 HarmonyOS 中应用 JS.CSS.HTML,HarmonyOS 的 UI 组件 ...

  5. XML文件的解析--libxml库函数解释

    [c语言]XML文件的解析--libxml库函数解释 2009-09-02 13:12 XML文件的解析--libxml库函数解释 libxml(一)                          ...

  6. Oracle ADG容灾端部署Rman备份的一些实践经验

    随着数据库中数据量的不断增加.业务的复杂性提高.各种政策颁布的系统容灾等级要求,数据库备份的工作及备份文件的有效性及备份文件的管理变得愈发重要.在Oracle数据库中提供了强大的备份和恢复工具,其中R ...

  7. AtCoder_abc331

    AtCoder_abc331 (这次题真的真的真的好难) 比赛链接 A - Tomorrow 题目链接 题目大意 有一个\(M\)个月,\(D\)天的日历,请输出\(y年m月z日\)的下一天. 解题思 ...

  8. 配置tabBar导航菜单与open跳转差异

    "tabBar": {        "color": "#333",        "selectedColor": ...

  9. hbase报错 ERROR: org.apache.hadoop.hbase.ipc.ServerNotRunningYetException: Server is not running yet

    hbase报错:hbase shell能打开 网页也能打开 但是一执行命令就开始报错. 原因:hadoop的安全模式打开. 解决方法:关闭安全模式 ,再重新启动HBase就可以了. 具体的命令: 1. ...

  10. [VBA] 实现SQLserver数据库的增删改查

    [VBA] 实现 SQLserver数据库的增删改查 问题背景 用于库存管理的简单Excel系统实现,能够让库管员录入每日出入库信息并进能够按日期查询导出数据,生成简要报表,以及数据修改与删除.非科班 ...