题目

在一片草原上有 \(N\) 个兔子窝,每个窝里住着一只兔子,有M条路径连接这些窝。更特殊地是,至多只有一个兔子窝有3条或更多的路径与它相连,其它的兔子窝只有1条或2条路径与其相连。换句话讲,这些兔子窝之前的路径构成一张 \(N\) 个点、\(M\) 条边的无向连通图,而度数大于2的点至多有1个。

兔子们决定把其中 \(K\) 个兔子窝扩建成临时避难所。当危险来临时,每只兔子均会同时前往距离它最近的避难所躲避,路程中花费的时间在数值上等于经过的路径条数。为了在最短的时间内让所有兔子脱离危险,请你安排一种建造避难所的方式,使最后一只到达避难所的兔子所花费的时间尽量少。

分析

显然二分答案,然后判断能不能成功

首先考虑一条链,它需要的最少的避难所数量是 \(\lceil \frac{len}{2 \times mid + 1} \rceil\)

就是能不放就不放

环呢?

然后发现只有一个度数大于 \(2\) 的点

记为 \(rt\)

它必然是环上的点

如果把它删了,就只剩下一堆链

于是我们枚举一个可以覆盖 \(rt\) 的,把这个点能覆盖的所有点都删了

图只剩下一堆链

再统计每条链的长度 \(len\),用上面的贪心办法算

算完后如果结果小于等于 \(k\),那就成功了

于是就是 \(O(N^2 \log N)\) 的

\(Code\)

#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std; const int N = 1005 , M = 1505;
int n , m , k , tot , rt , h[N] , vis[N] , deg[N] , X[N];
struct edge{
int to , nxt;
}e[M * 2]; inline void add(int x , int y){e[++tot] = edge{y , h[x]} , h[x] = tot;} void choose(int x , int d , int mid)
{
if (d <= mid) X[++X[0]] = x;
else return;
vis[x] = 1;
for(register int i = h[x]; i; i = e[i].nxt)
{
int v = e[i].to;
if (!vis[v]) choose(v , d + 1 , mid);
}
} void del(int x , int d , int mid)
{
if (d > mid) return;
vis[x] = 1;
for(register int i = h[x]; i; i = e[i].nxt)
{
int v = e[i].to;
if (!vis[v]) del(v , d + 1 , mid);
}
} int Get(int x)
{
int res = 1; vis[x] = 1;
for(register int i = h[x]; i; i = e[i].nxt)
{
int v = e[i].to;
if (!vis[v]) res += Get(v);
}
return res;
} int check(int mid)
{
if (rt == 0) return (int)ceil(1.0 * n / (2 * mid + 1));
memset(vis , 0 , sizeof vis);
int num = 0; X[0] = 0 , choose(rt , 0 , mid);
for(register int i = 1; i <= X[0]; i++)
{
memset(vis , 0 , sizeof vis);
del(X[i] , 0 , mid) , num = 1;
for(register int i = 1; i <= n; i++)
if (!vis[i]) num += (int)ceil(1.0 * Get(i) / (2 * mid + 1));
if (num <= k) return 1;
}
return 0;
} int main()
{
freopen("rabbit.in" , "r" , stdin);
freopen("rabbit.out" , "w" , stdout);
scanf("%d%d%d" , &n ,&m , &k);
int x , y;
for(register int i = 1; i <= m; i++)
scanf("%d%d" , &x , &y) , add(x , y) , add(y , x) , deg[x]++ , deg[y]++;
for(register int i = 1; i <= n; i++)
if (deg[i] >= 3){rt = i; break;}
if (n == 1){printf("0"); return 0;}
int l = 1 , r = n , mid , res;
while (l <= r)
{
mid = (l + r) >> 1;
if (check(mid)) res = mid , r = mid - 1;
else l = mid + 1;
}
printf("%d" , res);
}

JZOJ 4896. 【NOIP2016提高A组集训第16场11.15】兔子的更多相关文章

  1. JZOJ 【NOIP2016提高A组集训第16场11.15】兔子

    JZOJ [NOIP2016提高A组集训第16场11.15]兔子 题目 Description 在一片草原上有N个兔子窝,每个窝里住着一只兔子,有M条路径连接这些窝.更特殊地是,至多只有一个兔子窝有3 ...

  2. JZOJ 【NOIP2016提高A组集训第16场11.15】SJR的直线

    JZOJ [NOIP2016提高A组集训第16场11.15]SJR的直线 题目 Description Input Output Sample Input 6 0 1 0 -5 3 0 -5 -2 2 ...

  3. 【JZOJ4895】【NOIP2016提高A组集训第16场11.15】三部曲

    =v= 因为外来的入侵,国王决定在某些城市加派士兵.所有城市初始士兵数量为0.当城市 被加派了k名士兵时.城市i的所有子城市需要被加派k+1名士兵.这些子城市的所有子城市需要被加派k+2名士兵.以此类 ...

  4. 【JZOJ4894】【NOIP2016提高A组集训第16场11.15】SJR的直线

    题目描述 数据范围 解法 考虑逐次加入每一条直线. 对于当前已加入的直线集合L,现在要新加入一条直线l. 那么它产生的贡献,与平行线有关. 对于任意三条直线,如果其中任意两条平行,那么将不做贡献. 所 ...

  5. 【JZOJ4896】【NOIP2016提高A组集训第16场11.15】兔子

    题目描述 在一片草原上有N个兔子窝,每个窝里住着一只兔子,有M条路径连接这些窝.更特殊地是,至多只有一个兔子窝有3条或更多的路径与它相连,其它的兔子窝只有1条或2条路径与其相连.换句话讲,这些兔子窝之 ...

  6. 【NOIP2016提高A组集训第4场11.1】平衡的子集

    题目 夏令营有N个人,每个人的力气为M(i).请大家从这N个人中选出若干人,如果这些人可以分成两组且两组力气之和完全相等,则称为一个合法的选法,问有多少种合法的选法? 分析 如果暴力枚举每个人被分到哪 ...

  7. 【NOIP2016提高A组集训第14场11.12】随机游走——期望+树形DP

    好久没有写过题解了--现在感觉以前的题解弱爆了,还有这么多访问量-- 没有考虑别人的感受,没有放描述.代码,题解也写得歪歪扭扭. 并且我要强烈谴责某些写题解的代码不打注释的人,像天书那样,不是写给普通 ...

  8. 【JZOJ4841】【NOIP2016提高A组集训第4场11.1】平衡的子集

    题目描述 夏令营有N个人,每个人的力气为M(i).请大家从这N个人中选出若干人,如果这些人可以分成两组且两组力气之和完全相等,则称为一个合法的选法,问有多少种合法的选法? 数据范围 40%的数据满足: ...

  9. 【NOIP2016提高A组集训第14场11.12】随机游走

    题目 YJC最近在学习图的有关知识.今天,他遇到了这么一个概念:随机游走.随机游走指每次从相邻的点中随机选一个走过去,重复这样的过程若干次.YJC很聪明,他很快就学会了怎么跑随机游走.为了检验自己是不 ...

  10. 【NOIP2016提高A组集训第13场11.11】最大匹配

    题目 mhy12345学习了二分图匹配,二分图是一种特殊的图,其中的点可以分到两个集合中,使得相同的集合中的点两两没有连边. 图的"匹配"是指这个图的一个边集,里面的边两两不存在公 ...

随机推荐

  1. 【collection】1.java容器之HashMap&LinkedHashMap&Hashtable

    Map源码剖析 HashMap&LinkedHashMap&Hashtable hashMap默认的阈值是0.75 HashMap put操作 put操作涉及3种结构,普通node节点 ...

  2. 【每日一题】【二分mid&贪心】2022年2月8日-NC163 最长上升子序列(一)

    1.描述给定一个长度为 n 的数组 arr,求它的最长严格上升子序列的长度.所谓子序列,指一个数组删掉一些数(也可以不删)之后,形成的新数组.例如 [1,5,3,7,3] 数组,其子序列有:[1,3, ...

  3. 【Spark】Day03-Spark SQL:DataFrame、DataSet、sql编程与转换、项目实战(区域热门商品)

    一.概述 1.介绍 将Spark SQL转换成RDD,然后提交到集群执行[对比hive] 提供2个编程抽象:DataFrame&DataSet 可以使用SQL和DatasetAPI与Spark ...

  4. 3D旋转不能对齐,元素边倾斜

    1 <!DOCTYPE html> 2 <html lang="en"> 3 4 <head> 5 <meta charset=" ...

  5. .net做一个基于ChatGpt的微信机器人吧~[全教程]

    最近这个ChatGPT很火啊,看了B站上很多视频,自己非常手痒,高低自己得整一个啊,很多人都是把ChatGPT和微信结合在一起,正巧我是Wechaty框架的.net sdk贡献者,这不是一应俱全了吗? ...

  6. @ApiImplicitParams注解的详细使用

    一.@ApiImplicitParams注解的详细使用 业务需求: 1.根据服务员类别id(单个id)+服务员星级id(id的list)查询对应的服务员列表 1.controller代码: 点击查看代 ...

  7. flask博客项目之tinymce图片上传

    查看当前的博客发表情况 截图一张立马粘贴进来 点击发表,显示数据太长 不断撤退回到刚刚页面 删除大图,换成小图,上传方式 点击发表可以成功发表 数据库中查看,是把图片生成这种编码后字符串方式存储的了, ...

  8. Django重点及面试题

    Django 简述python三大主流web框架 """ django 大而全,类似于航空母舰 但是有时候过于笨重 flask 小而精,类似于游骑兵(单行代码就可以起一个 ...

  9. python的grpc环境安装

    环境 ubuntu:bionic的docker image docker run -it ubuntu:bionic python的grpc环境安装 参考grpc官网:https://grpc.io/ ...

  10. python从公众号文章中获取二维码

    在做一个公众号采集的项目中,客户有个要求,想把二维码的url保存到数据库中,如图. 原本以为要各种骚操作各种逆向才能获取得到,没想到竟然很简单. 第一步 观察二维码url的规范 https://mp. ...