前言

前面我们给大家介绍了基于LabVIEW+YOLOv3/YOLOv4的物体识别(对象检测),今天接着上次的内容再来看看YOLOv5。本次主要是和大家分享使用LabVIEW快速实现yolov5的物体识别,本博客中使用的智能工具包可到主页置顶博客LabVIEW AI视觉工具包(非NI Vision)下载与安装教程中下载。若配置运行过程中遇到困难,欢迎大家评论区留言,博主将尽力解决。

一、关于YOLOv5

YOLOv5是在 COCO 数据集上预训练的一系列对象检测架构和模型。表现要优于谷歌开源的目标检测框架 EfficientDet,在检测精度和速度上相比yolov4都有较大的提高。目前YOLOv5官方代码中,最新版本是YOLOv5 v6.1,一共给出了5个版本的模型,分别是 YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、YOLO5x 五个模型(如下图所示)。这些不同的变体模型使得YOLOv5能很好的在精度和速度中权衡,方便用户选择。其中五个模型性能依次增强。比如YOLOv5n模型参数量最小,速度最快,AP精度最低;YOLOv5x模型参数量最大,速度最慢,AP精度最高。本博客,我们以YOLOv5最新版本来介绍相关的部署开发。

YOLOv5相比于前面yolo模型的主要特点是:

1、小目标的检测精度上有明显的提高;

2、能自适应锚框计算

3、具有数据增强功能,随机缩放,裁剪,拼接等功能

4、灵活性极高、速度超快,模型超小、在模型的快速部署上具有极强优势

关于YOLOv5的网络结构解释网上有很多,这里就不再赘述了,大家可以看其他大神对于YOLOv5网络结构的解析。

二、YOLOv5模型的获取

为方便使用,博主已经将yolov5模型转化为onnx格式,可在百度网盘下载 链接:https://pan.baidu.com/s/15dwoBM4W-5_nlRj4G9EhRg?pwd=yiku 提取码:yiku

1.下载源码

将Ultralytics开源的YOLOv5代码Clone或下载到本地,可以直接点击Download ZIP进行下载,

下载地址:https://github.com/ultralytics/yolov5

2.安装模块

解压刚刚下载的zip文件,然后安装yolov5需要的模块,记住cmd的工作路径要在yolov5文件夹下:

打开cmd切换路径到yolov5文件夹下,并输入如下指令,安装yolov5需要的模块

pip install -r requirements.txt

3.下载预训练模型

打开cmd,进入python环境,使用如下指令下载预训练模型:

import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5n - yolov5x6, custom

成功下载后如下图所示:

4.转换为onnx模型

在yolov5之前的yolov3和yolov4的官方代码都是基于darknet框架实现的,因此opencv的dnn模块做目标检测时,读取的是.cfg和.weight文件,非常方便。但是yolov5的官方代码是基于pytorch框架实现的。需要先把pytorch的训练模型.pt文件转换到.onnx文件,然后才能载入到opencv的dnn模块里。

将.pt文件转化为.onnx文件,主要是参考了nihate大佬的博客:https://blog.csdn.net/nihate/article/details/112731327

将export.py做如下修改,将def export_onnx()中的第二个try注释掉,即如下部分注释:

    '''
  try:
      check_requirements(('onnx',))
      import onnx

      LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
      f = file.with_suffix('.onnx')
      print(f)

      torch.onnx.export(
          model,
          im,
          f,
          verbose=False,
          opset_version=opset,
          training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
          do_constant_folding=not train,
          input_names=['images'],
          output_names=['output'],
          dynamic_axes={
              'images': {
                  0: 'batch',
                  2: 'height',
                  3: 'width'}, # shape(1,3,640,640)
              'output': {
                  0: 'batch',
                  1: 'anchors'} # shape(1,25200,85)
          } if dynamic else None)

      # Checks
      model_onnx = onnx.load(f) # load onnx model
      onnx.checker.check_model(model_onnx) # check onnx model

      # Metadata
      d = {'stride': int(max(model.stride)), 'names': model.names}
      for k, v in d.items():
          meta = model_onnx.metadata_props.add()
          meta.key, meta.value = k, str(v)
      onnx.save(model_onnx, f)'''

并新增一个函数def my_export_onnx():

def my_export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
   print('anchors:', model.yaml['anchors'])
   wtxt = open('class.names', 'w')
   for name in model.names:
       wtxt.write(name+'\n')
   wtxt.close()
   # YOLOv5 ONNX export
   print(im.shape)
   if not dynamic:
       f = os.path.splitext(file)[0] + '.onnx'
       torch.onnx.export(model, im, f, verbose=False, opset_version=12, input_names=['images'], output_names=['output'])
   else:
       f = os.path.splitext(file)[0] + '_dynamic.onnx'
       torch.onnx.export(model, im, f, verbose=False, opset_version=12, input_names=['images'],
                         output_names=['output'], dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'},  # shape(1,3,640,640)
                                       'output': {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)
                                      })
   return f

在cmd中输入转onnx的命令(记得将export.py和pt模型放在同一路径下):

python export.py --weights yolov5s.pt --include onnx

如下图所示为转化成功界面

其中yolov5s可替换为yolov5m\yolov5m\yolov5l\yolov5x

三、LabVIEW调用YOLOv5模型实现实时物体识别(yolov5_new_opencv.vi)

本例中使用LabvVIEW工具包中opencv的dnn模块readNetFromONNX()载入onnx模型,可选择使用cuda进行推理加速。

1.查看模型

我们可以使用netron 查看yolov5m.onnx的网络结构,浏览器中输入链接:https://netron.app/,点击Open Model,打开相应的网络模型文件即可。

如下图所示是转换之后的yolov5m.onnx的属性:

2.参数及输出

blobFromImage参数: size:640*640 Scale=1/255 Means=[0,0,0]

Net.forward()输出: 单数组 25200*85

3.LabVIEW调用YOLOv5源码

如下图所示,调用摄像头实现实时物体识别

4.LabVIEW调用YOLOv5实时物体识别结果

本次我们是以yolov5m.onnx为例来测试识别结果和速度的; 不使用GPU加速,仅在CPU模式下,实时检测推理用时在300ms/frame左右

使用GPU加速,实时检测推理用时为30~40ms/frame,是cpu速度的十倍多

总结

以上就是今天要给大家分享的内容,本次分享内容实验环境说明:操作系统为Windows10,python版本为3.6及以上,LabVIEW为2018及以上 64位版本,视觉工具包为博客开头提到的工具包。

如需源码,如需源码,请关注微信公众号:VIRobotics。回复关键字“yolov5”。

如您想要探讨更多关于LabVIEW与人工智能技术,欢迎加入我们的技术交流群:705637299。进群请备注暗号:LabVIEW深度学习

如果文章对你有帮助,欢迎关注、点赞、收藏

 

【YOLOv5】LabVIEW+YOLOv5快速实现实时物体识别(Object Detection)含源码的更多相关文章

  1. 手把手教你使用LabVIEW人工智能视觉工具包快速实现传统Opencv算子的调用(含源码)

    前言 今天我们一起来使用LabVIEW AI视觉工具包快速实现图像的滤波与增强:图像灰度处理:阈值处理与设定:二值化处理:边缘提取与特征提取等基本操作.工具包的安装与下载方法可见之前的博客. 一.图像 ...

  2. 手把手教你使用LabVIEW人工智能视觉工具包快速实现图像读取与采集(含源码)

    目录 前言 一.工具包位置 二.图像采集与色彩空间转换 1.文件读写 2.实现图片读取 3.使用算子cvtColor实现颜色空间转换 三.从摄像头采集图像 1.Camera类 2.属性节点 3.实现摄 ...

  3. 【YOLOv5】手把手教你使用LabVIEW ONNX Runtime部署 TensorRT加速,实现YOLOv5实时物体识别(含源码)

    前言 上一篇博客给大家介绍了LabVIEW开放神经网络交互工具包[ONNX],今天我们就一起来看一下如何使用LabVIEW开放神经网络交互工具包实现TensorRT加速YOLOv5. 以下是YOLOv ...

  4. 手把手教你使用LabVIEW OpenCV dnn实现物体识别(Object Detection)含源码

    前言 今天和大家一起分享如何使用LabVIEW调用pb模型实现物体识别,本博客中使用的智能工具包可到主页置顶博客LabVIEW AI视觉工具包(非NI Vision)下载与安装教程中下载 一.物体识别 ...

  5. vue 快速入门 系列 —— 侦测数据的变化 - [vue 源码分析]

    其他章节请看: vue 快速入门 系列 侦测数据的变化 - [vue 源码分析] 本文将 vue 中与数据侦测相关的源码摘了出来,配合上文(侦测数据的变化 - [基本实现]) 一起来分析一下 vue ...

  6. 手把手教你使用LabVIEW OpenCV DNN实现手写数字识别(含源码)

    @ 目录 前言 一.OpenCV DNN模块 1.OpenCV DNN简介 2.LabVIEW中DNN模块函数 二.TensorFlow pb文件的生成和调用 1.TensorFlow2 Keras模 ...

  7. OpenCV开发笔记(六十九):红胖子8分钟带你使用传统方法识别已知物体(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  8. 手把手教你使用LabVIEW OpenCV dnn实现图像分类(含源码)

    @ 目录 前言 一.什么是图像分类? 1.图像分类的概念 2.MobileNet简介 二.使用python实现图像分类(py_to_py_ssd_mobilenet.py) 1.获取预训练模型 2.使 ...

  9. Android 二维码 生成和识别(附Demo源码)

    今天讲一下目前移动领域很常用的技术——二维码.现在大街小巷.各大网站都有二维码的踪迹,不管是IOS. Android.WP都有相关支持的软件.之前我就想了解二维码是如何工作,最近因为工作需要使用相关技 ...

随机推荐

  1. nodejs学习总结02

    response对象常用的API #response对象 response  对象类型<http.ServerResponse> response对象常用成员:response.write ...

  2. YII模块化处理

    config.php $config = [ 'modules' => [ 'comment' => [ 'class' => 'frontend\modules\comment\C ...

  3. GreatSQL重磅特性,InnoDB并行并行查询优化测试

    欢迎来到 GreatSQL社区分享的MySQL技术文章,如有疑问或想学习的内容,可以在下方评论区留言,看到后会进行解答 GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 1 ...

  4. shiro登录过程

    工作流程: 浏览器将用户名.密码.是否记住登录等信息发送给登录controller , new UsernamePasswordToken()获取token,将用户名.加密后的密码.rememberM ...

  5. 用GitHub Actions自动部署Hexo

    什么是 GitHub Actions ? GitHub Actions 是一个 CI/CD(持续集成/持续部署)工具,GitHub 于 2018 年 10 月推出,正式版于 2019 年 11 月正式 ...

  6. ABC 203 F - Weed (DP)

    ABC203F - Weed 题意转述 S t e v e \rm Steve Steve 和 A l e x \rm Alex Alex 正在下界( N e t h e r l e n d \rm ...

  7. San(COCI2017.2)题解

    题意 一个人为了楼顶的金币要去跳楼,但是不能往更矮的楼上跳. 求在一个长为N的序列中总点权值和大于等于K的不下降序列数. N<=40,K<=4e10 官方题解 折半搜索的经典例子!N在20 ...

  8. liunx系统docker部署.net core3.1

    此篇文章演示基本的基于docker部署.netcore服务,liunx系统腾讯云ubuntu,.net core版本3.1. 1.安装docker apt install docker.io 2.拉取 ...

  9. ping: sina.cn: Name or service not known

    该方法针对Ubuntu18及以后版本. 第一次遇到ping:报错Name or service not known这个问题在百度上找了很久说的都是什么修改 /etc/resolv.conf,但每次修改 ...

  10. 使用STM32控制TMC5160驱动步进电机

    首先先来了解一下TMC5160的3种工作模式 TMC5160通过两个引脚来控制它的工作模式:SD_MODE和SPI_MODE. 1.当SD_MODE接地,SPI_MODE拉高,TMC5160即工作在模 ...