【YOLOv5】LabVIEW+YOLOv5快速实现实时物体识别(Object Detection)含源码
前言
前面我们给大家介绍了基于LabVIEW+YOLOv3/YOLOv4的物体识别(对象检测),今天接着上次的内容再来看看YOLOv5。本次主要是和大家分享使用LabVIEW快速实现yolov5的物体识别,本博客中使用的智能工具包可到主页置顶博客LabVIEW AI视觉工具包(非NI Vision)下载与安装教程中下载。若配置运行过程中遇到困难,欢迎大家评论区留言,博主将尽力解决。
一、关于YOLOv5
YOLOv5是在 COCO 数据集上预训练的一系列对象检测架构和模型。表现要优于谷歌开源的目标检测框架 EfficientDet,在检测精度和速度上相比yolov4都有较大的提高。目前YOLOv5官方代码中,最新版本是YOLOv5 v6.1,一共给出了5个版本的模型,分别是 YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、YOLO5x 五个模型(如下图所示)。这些不同的变体模型使得YOLOv5能很好的在精度和速度中权衡,方便用户选择。其中五个模型性能依次增强。比如YOLOv5n模型参数量最小,速度最快,AP精度最低;YOLOv5x模型参数量最大,速度最慢,AP精度最高。本博客,我们以YOLOv5最新版本来介绍相关的部署开发。
YOLOv5相比于前面yolo模型的主要特点是:
1、小目标的检测精度上有明显的提高;
2、能自适应锚框计算
3、具有数据增强功能,随机缩放,裁剪,拼接等功能
4、灵活性极高、速度超快,模型超小、在模型的快速部署上具有极强优势
关于YOLOv5的网络结构解释网上有很多,这里就不再赘述了,大家可以看其他大神对于YOLOv5网络结构的解析。
二、YOLOv5模型的获取
为方便使用,博主已经将yolov5模型转化为onnx格式,可在百度网盘下载 链接:https://pan.baidu.com/s/15dwoBM4W-5_nlRj4G9EhRg?pwd=yiku 提取码:yiku
1.下载源码
将Ultralytics开源的YOLOv5代码Clone或下载到本地,可以直接点击Download ZIP进行下载,
下载地址:https://github.com/ultralytics/yolov5
2.安装模块
解压刚刚下载的zip文件,然后安装yolov5需要的模块,记住cmd的工作路径要在yolov5文件夹下:
打开cmd切换路径到yolov5文件夹下,并输入如下指令,安装yolov5需要的模块
pip install -r requirements.txt
3.下载预训练模型
打开cmd,进入python环境,使用如下指令下载预训练模型:
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom
成功下载后如下图所示:
4.转换为onnx模型
在yolov5之前的yolov3和yolov4的官方代码都是基于darknet框架实现的,因此opencv的dnn模块做目标检测时,读取的是.cfg和.weight文件,非常方便。但是yolov5的官方代码是基于pytorch框架实现的。需要先把pytorch的训练模型.pt文件转换到.onnx文件,然后才能载入到opencv的dnn模块里。
将.pt文件转化为.onnx文件,主要是参考了nihate大佬的博客:https://blog.csdn.net/nihate/article/details/112731327
将export.py做如下修改,将def export_onnx()中的第二个try注释掉,即如下部分注释:
'''
try:
check_requirements(('onnx',))
import onnx
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
f = file.with_suffix('.onnx')
print(f)
torch.onnx.export(
model,
im,
f,
verbose=False,
opset_version=opset,
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
do_constant_folding=not train,
input_names=['images'],
output_names=['output'],
dynamic_axes={
'images': {
0: 'batch',
2: 'height',
3: 'width'}, # shape(1,3,640,640)
'output': {
0: 'batch',
1: 'anchors'} # shape(1,25200,85)
} if dynamic else None)
# Checks
model_onnx = onnx.load(f) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
# Metadata
d = {'stride': int(max(model.stride)), 'names': model.names}
for k, v in d.items():
meta = model_onnx.metadata_props.add()
meta.key, meta.value = k, str(v)
onnx.save(model_onnx, f)'''
并新增一个函数def my_export_onnx():
def my_export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
print('anchors:', model.yaml['anchors'])
wtxt = open('class.names', 'w')
for name in model.names:
wtxt.write(name+'\n')
wtxt.close()
# YOLOv5 ONNX export
print(im.shape)
if not dynamic:
f = os.path.splitext(file)[0] + '.onnx'
torch.onnx.export(model, im, f, verbose=False, opset_version=12, input_names=['images'], output_names=['output'])
else:
f = os.path.splitext(file)[0] + '_dynamic.onnx'
torch.onnx.export(model, im, f, verbose=False, opset_version=12, input_names=['images'],
output_names=['output'], dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
})
return f
在cmd中输入转onnx的命令(记得将export.py和pt模型放在同一路径下):
python export.py --weights yolov5s.pt --include onnx
如下图所示为转化成功界面
其中yolov5s可替换为yolov5m\yolov5m\yolov5l\yolov5x
三、LabVIEW调用YOLOv5模型实现实时物体识别(yolov5_new_opencv.vi)
本例中使用LabvVIEW工具包中opencv的dnn模块readNetFromONNX()载入onnx模型,可选择使用cuda进行推理加速。
1.查看模型
我们可以使用netron 查看yolov5m.onnx的网络结构,浏览器中输入链接:https://netron.app/,点击Open Model,打开相应的网络模型文件即可。
如下图所示是转换之后的yolov5m.onnx的属性:
2.参数及输出
blobFromImage参数: size:640*640 Scale=1/255 Means=[0,0,0]
Net.forward()输出: 单数组 25200*85
3.LabVIEW调用YOLOv5源码
如下图所示,调用摄像头实现实时物体识别
4.LabVIEW调用YOLOv5实时物体识别结果
本次我们是以yolov5m.onnx为例来测试识别结果和速度的; 不使用GPU加速,仅在CPU模式下,实时检测推理用时在300ms/frame左右
使用GPU加速,实时检测推理用时为30~40ms/frame,是cpu速度的十倍多
总结
以上就是今天要给大家分享的内容,本次分享内容实验环境说明:操作系统为Windows10,python版本为3.6及以上,LabVIEW为2018及以上 64位版本,视觉工具包为博客开头提到的工具包。
如需源码,如需源码,请关注微信公众号:VIRobotics。回复关键字“yolov5”。
如您想要探讨更多关于LabVIEW与人工智能技术,欢迎加入我们的技术交流群:705637299。进群请备注暗号:LabVIEW深度学习
如果文章对你有帮助,欢迎关注、点赞、收藏
【YOLOv5】LabVIEW+YOLOv5快速实现实时物体识别(Object Detection)含源码的更多相关文章
- 手把手教你使用LabVIEW人工智能视觉工具包快速实现传统Opencv算子的调用(含源码)
前言 今天我们一起来使用LabVIEW AI视觉工具包快速实现图像的滤波与增强:图像灰度处理:阈值处理与设定:二值化处理:边缘提取与特征提取等基本操作.工具包的安装与下载方法可见之前的博客. 一.图像 ...
- 手把手教你使用LabVIEW人工智能视觉工具包快速实现图像读取与采集(含源码)
目录 前言 一.工具包位置 二.图像采集与色彩空间转换 1.文件读写 2.实现图片读取 3.使用算子cvtColor实现颜色空间转换 三.从摄像头采集图像 1.Camera类 2.属性节点 3.实现摄 ...
- 【YOLOv5】手把手教你使用LabVIEW ONNX Runtime部署 TensorRT加速,实现YOLOv5实时物体识别(含源码)
前言 上一篇博客给大家介绍了LabVIEW开放神经网络交互工具包[ONNX],今天我们就一起来看一下如何使用LabVIEW开放神经网络交互工具包实现TensorRT加速YOLOv5. 以下是YOLOv ...
- 手把手教你使用LabVIEW OpenCV dnn实现物体识别(Object Detection)含源码
前言 今天和大家一起分享如何使用LabVIEW调用pb模型实现物体识别,本博客中使用的智能工具包可到主页置顶博客LabVIEW AI视觉工具包(非NI Vision)下载与安装教程中下载 一.物体识别 ...
- vue 快速入门 系列 —— 侦测数据的变化 - [vue 源码分析]
其他章节请看: vue 快速入门 系列 侦测数据的变化 - [vue 源码分析] 本文将 vue 中与数据侦测相关的源码摘了出来,配合上文(侦测数据的变化 - [基本实现]) 一起来分析一下 vue ...
- 手把手教你使用LabVIEW OpenCV DNN实现手写数字识别(含源码)
@ 目录 前言 一.OpenCV DNN模块 1.OpenCV DNN简介 2.LabVIEW中DNN模块函数 二.TensorFlow pb文件的生成和调用 1.TensorFlow2 Keras模 ...
- OpenCV开发笔记(六十九):红胖子8分钟带你使用传统方法识别已知物体(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...
- 手把手教你使用LabVIEW OpenCV dnn实现图像分类(含源码)
@ 目录 前言 一.什么是图像分类? 1.图像分类的概念 2.MobileNet简介 二.使用python实现图像分类(py_to_py_ssd_mobilenet.py) 1.获取预训练模型 2.使 ...
- Android 二维码 生成和识别(附Demo源码)
今天讲一下目前移动领域很常用的技术——二维码.现在大街小巷.各大网站都有二维码的踪迹,不管是IOS. Android.WP都有相关支持的软件.之前我就想了解二维码是如何工作,最近因为工作需要使用相关技 ...
随机推荐
- 题解 P1999【覆盖墙壁】
数学题 令 \(A_n\) 为 \(2\times n\) 的墙壁放满块的方案数,考虑递推. 显然 \(A_0=1\),我们令对于 \(k<0\),\(A_k=0\) . 放直线型的块非常好递推 ...
- PDF 拆分/合并
不会真的有人会去下载那些广告免费,实则要收会员费的黑心软件来进行PDF的拆分合并吧??? 在下载两个均不能免费实现PDF自由拆分.合并,以及PDF打印方式会增加文件大小的情况下,一个合格的程序员肯定不 ...
- 0202年,您真的需要Thrift这样一个RPC微服务框架来拯救一下传统HTTP接口(api)了
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_104 目前市面上类似Django的drf框架基于json的http接口解决方案大行其道,人们也热衷于在接口不多.系统与系统交互较少 ...
- 用虚拟机封装win10系统的一些记录
想用虚拟机封装一个WIN10企业LTSC,期间参考了IT天空小鱼儿的几大步骤一直到手动优化完,后面就自己用系统安装直接备份了一个.gho镜像.期间出过好多毛病,不过总算是成功实现了.注意点: 1.前面 ...
- 万答#21,如何查看 MySQL 数据库一段时间内的连接情况
GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 查看方式 已知至少有两种方式可以实现 1.开启 general_log 就可以观察到 开启命令 mysql> set ...
- Spherical类定义和实现
此类是一个全景摄像机视角,书上介绍了详细原理.直接给实现代码. 类声明: #pragma once #ifndef __SPHERICAL_HEADER__ #define __SPHERICAL_H ...
- MySQL启动报:[ERROR] The server quit without updating PID file
修改配置后MySQL启动不了,报错: [root@localhost mysql]# service mysql restart Starting MySQL...[ERROR] The server ...
- java学习第二天多态.day09
接口 接口总结 接口表示一种规约(规范.标准),它里面定义了一些列抽象方法(功能),它可以被多个类实现. 1接口名称首写字母用I,表示一个接口,后命名使用驼峰命名 2.接口中定义的都是抽象方法,所以可 ...
- hotspot算法实现 <<深入理解Java虚拟机>>
1.枚举根节点 解决何时枚举,不需要实时的枚举,oopMap数据结构对象存储枚举信息 对象引用发生变化,需要存储每一条指令到OOPMap吗,,几百M的对象耗时需要很大的内存.GC空间成本 2.安全点: ...
- PHP随机图片API
相比上一个版本代码缩短了 此版本为图片专用 查看代码 <?php $img=file('img.txt');//txt文件 $url=array_rand($img);//imgtxt文档里面图 ...