1.大量消息在mq里积压

场景:几千万条数据在MQ里积压了七八个小时,从下午4点多,积压到了晚上很晚,10点多,11点多。线上故障了,这个时候要不然就是修复consumer的问题,让他恢复消费速度,然后傻傻的等待几个小时消费完毕。这个肯定不行。一个消费者一秒是1000条,一秒3个消费者是3000条,一分钟是18万条,1000多万条。
所以如果你积压了几百万到上千万的数据,即使消费者恢复了,也需要大概1小时的时间才能恢复过来。
解决方案:”
这种时候只能操作临时扩容,以更快的速度去消费数据了。具体操作步骤和思路如下:
①先修复consumer的问题,确保其恢复消费速度,然后将现有consumer都停掉。

②临时建立好原先10倍或者20倍的queue数量(新建一个topic,partition是原来的10倍)。

③然后写一个临时分发消息的consumer程序,这个程序部署上去消费积压的消息,消费之后不做耗时处理,直接均匀轮询写入临时建好分10数量的queue里面。

④紧接着征用10倍的机器来部署consumer,每一批consumer消费一个临时queue的消息。

⑤这种做法相当于临时将queue资源和consumer资源扩大10倍,以正常速度的10倍来消费消息。

⑥等快速消费完了之后,恢复原来的部署架构,重新用原来的consumer机器来消费消息。

2.消息设置了过期时间,过期就丢了

假设你用的是rabbitmq,rabbitmq是可以设置过期时间的,就是TTL,如果消息在queue中积压超过一定的时间就会被rabbitmq给清理掉,这个数据就没了。那这就是第二个坑了。这就不是说数据会大量积压在mq里,而是大量的数据会直接搞丢。
解决方案:
这种情况下,实际上没有什么消息挤压,而是丢了大量的消息。所以第一种增加consumer肯定不适用。
这种情况可以采取 “批量重导” 的方案来进行解决。
在流量低峰期(比如夜深人静时),写一个程序,手动去查询丢失的那部分数据,然后将消息重新发送到mq里面,把丢失的数据重新补回来。

3.积压消息长时间没有处理,mq放不下了

如果走的方式是消息积压在mq里,那么如果你很长时间都没处理掉,此时导致mq都快写满了,咋办?这个还有别的办法吗?
解决方案:
这个就没有办法了,肯定是第一方案执行太慢,这种时候只好采用 “丢弃+批量重导” 的方式来解决了。

首先,临时写个程序,连接到mq里面消费数据,收到消息之后直接将其丢弃,快速消费掉积压的消息,降低MQ的压力,然后走第二种方案,在晚上夜深人静时去手动查询重导丢失的这部分数据。

mq消息堆积处理的更多相关文章

  1. 2020-04-28:工作中如何解决MQ消息堆积和消息重复的问题?

    福哥答案2020-04-28:此答案来自群员,感谢群员支持. 消息堆积 只能考虑 增多消费者 以及后端其他服务 组件的吞吐能力 别的有办法吗 如果更彻底一点 分撒单个队列里的消息 队列 更分门别类 或 ...

  2. RabbitMQ消息可靠性、死信交换机、消息堆积问题

    目录 消息可靠性 生产者消息确认 示例 消费者消息确认 示例 死信交换机 例子 高可用问题 消息堆积问题 惰性队列 参考 消息可靠性 确保消息至少被消费了一次(不丢失) 消息丢失的几种情况: 消息在网 ...

  3. 阿里云ACE共创空间——MQ消息队列产品测试

    一.产品背景消息队列是阿里巴巴集团自主研发的专业消息中间件. 产品基于高可用分布式集群技术,提供消息订阅和发布.消息轨迹查询.定时(延时)消息.资源统计.监控报警等一系列消息云服务,是企业级互联网架构 ...

  4. IM开发基础知识补课(五):通俗易懂,正确理解并用好MQ消息队列

    1.引言 消息是互联网信息的一种表现形式,是人利用计算机进行信息传递的有效载体,比如即时通讯网坛友最熟悉的即时通讯消息就是其具体的表现形式之一. 消息从发送者到接收者的典型传递方式有两种: 1)一种我 ...

  5. 多维度对比5款主流分布式MQ消息队列,妈妈再也不担心我的技术选型了

    1.引言 对于即时通讯网来说,所有的技术文章和资料都在围绕即时通讯这个技术方向进行整理和分享,这一次也不例外.对于即时通讯系统(包括IM.消息推送系统等)来说,MQ消息中件间是非常常见的基础软件,但市 ...

  6. 使用Rabbit MQ消息队列

    使用Rabbit MQ消息队列 综合概述 消息队列 消息队列就是一个消息的链表,可以把消息看作一个记录,具有特定的格式以及特定的优先级.对消息队列有写权限的进程可以向消息队列中按照一定的规则添加新消息 ...

  7. 初识MQ消息队列

    MQ 消息队列 消息队列(Message Queue)简称MQ,是阿里巴巴集团中间件技术部自主研发的专业消息中间件. 产品基于高可用分布式集群技术,提供消息发布订阅.消息轨迹查询.定时(延时)消息.资 ...

  8. 如何处理RabbitMQ 消息堆积和消息丢失问题

    消息堆积 解决方案: 增加消费者或后台相关组件的吞吐能力 增加消费的多线程处理 根据不同的业务实现不同的丢弃任务,选择不同的策略淘汰任务 默认情况下,RabbitMQ消费者为单线程串行消费,设置并行消 ...

  9. 关于 RocketMQ ClientID 相同引发的消息堆积的问题

    首先,造成这个问题的 BUG RocketMQ 官方已经在 3月16号 的这个提交中修复了,这里只是探讨一下在修复之前造成问题的具体细节,更多的上下文可以参考我之前写的 <RocketMQ Co ...

随机推荐

  1. 区区牛马蹉跎 ,不要向生活低下头 Linux的账号和管理

    账户和管理权限 1.管理用户账号和组账号 2.管理目录和文件的属性 1.Linux基于用户身份对资源访问进行控制:用户账号(超级用户.普通用户.程序用户) 组账号(基本组.附加组).UID (用户标识 ...

  2. 简单的JSON数组转树形结构

    function toTree(data) { let result = [] if(!Array.isArray(data)) { return result } data.forEach(item ...

  3. python基础语法_9-2函数式编程

    https://www.imooc.com/learn/317 大纲 1-函数式编程简介 2-高阶函数 3-把函数作为参数 4-map()函数 5-reduce()函数 6-filter()函数 7- ...

  4. EMNLP 2017 | Sparse Communication for Distributed Gradient Descent

    通过将分布式随机梯度下降(SGD)中的稠密更新替换成稀疏更新可以显著提高训练速度.当大多数更新接近于0时,梯度更新会出现正偏差,因此我们将99%最小更新(绝对值)映射为零,然后使用该稀疏矩阵替换原来的 ...

  5. Realtime Data Processing at Facebook

    概要 这篇论文发表于2016年,主要是介绍Facebook内部的流式计算平台的设计与思考,对于流式计算的关键特性的实现选型上进行深度对比分析. 流式计算系统5个衡量指标 文中提到有5个重要的考量部分 ...

  6. oracle-11G转10G

    先查询directory的地址 导出的文件必须放在此目录select * from dba_directories;找到directory_name的值 ,也可以新建一个create director ...

  7. 一图胜千言,想让数据产生影响力,必须拥有好上手的BI数据分析工具

    当杂乱无章的数据,经过数据清洗后,得到了想用的数据,但是查看这些数据通过数据库只能看到数据本身,无法看到其中的规律,可以通过BI数据分析工具,图形化展示数据,使数据更形象化的展现在用户面前,更容易看出 ...

  8. IDisposable?释放非托管资源接口

    原文:https://www.cnblogs.com/luminji/archive/2011/03/29/1997812.html IDisposable高级篇:https://docs.micro ...

  9. 【C# 线程】Windows系统下常见的7种I/O模型 之Overlapped I/O模型

    overview 这个字符到底是什么含义呢?其实它的意思就是当程序在等待设备操作的时候,可以继续往下做而不必阻塞到那个地方等待设备操作的返回,这就造成了程序运行和设备操作时间上的重叠.  Overla ...

  10. 【Windows身份认证】NTLM

    前言 前几天自己在学习域渗透时突然对Windows的身份认证机制产生了兴趣,但看了好几天自己还是懵懵懂懂,期间自己看了许多师傅的优质文章,也做了一些例子的复现,于是有了这篇文章,可以说是自己的笔记或总 ...