模板题:B3609 [图论与代数结构 701] 强连通分量

题目描述

给定一张 n 个点 m 条边的有向图,求出其所有的强连通分量。

注意,本题可能存在重边和自环。

输入格式

第一行两个正整数 n , m ,表示图的点数和边数。

接下来 m 行,每行两个正整数 u 和 v 表示一条边。

输出格式

第一行一个整数表示这张图的强连通分量数目。

接下来每行输出一个强连通分量。第一行输出 1 号点所在强连通分量,第二行输出 2 号点所在强连通分量,若已被输出,则改为输出 3 号点所在强连通分量,以此类推。每个强连通分量按节点编号大小输出。

本题让我们求出强连通分量的数量以及各强连通分量所包含的点。
解决这个问题需要用到taryan算法,下面简要介绍一下该算法的实现。

定义如下概念:
dfn[x]
可以这么理解,对一张图上所有没有遍历过的点进行dfs遍历,dfn[x]就是x点被遍历到的次序。又称dfs序。
low[x]
x所能到达的点中最小的dfs序

在一个强连通分量中,每两个点都是可以互相到达的,那么如果对于点x,low[x]!=dfn[x],说明x可以访问到比它早遍历的点。

若dfn[x]=low[x],说明点x能到达的dfs序最小的点就是x,找到了一个新的强连通分量。

使用栈存储遍历途中经过的点。

代码

#include<bits/stdc++.h>
using namespace std;
const int h=10001;
int head[h],last[h*10],to[h*10],tot=0;
void add_edge(int x,int y){
tot++;
last[tot]=head[x];
head[x]=tot;
to[tot]=y;
} int cnt=0;//标记强连通分量的数量
int timedrop=0;//标记每个点被访问的“时间”
int dfn[h];//dfn存的是这一点被访问的时间
int low[h];//low存的是 这个点可以到达的 “访问时间”最早的点
int belong[h];//存储某个点所属的强连通分量的编号
vector<int>scc[h];
stack<int>s;
bool instack[h];//标记这个点在不在栈内
bool printed[h];//存储该强连通分量是否被输出过
void dfs(int x){
//这是整个程序的核心部分,即如何求强连通分量 timedrop++;
dfn[x]=timedrop;//标记这个点被访问到的时间
low[x]=timedrop;//当前这个点能到达的“访问时间”最早的点只有它自己,以后可能会更新
s.push(x);//将这一点压入栈中
instack[x]=1;
for(int i=head[x];i!=0;i=last[i]){
//这里开始遍历该点可以到达的点,更新这一点的low
int y=to[i];
if(!dfn[y]){//这一点还没有被访问
dfs(y);//那么我们先得到这一点的dfn与low
low[x]=min(low[x],low[y]);//然后用这一点更新当前点
}
else
if(instack[y])//如果这一点在栈中,那这肯定是一个在x之前被访问的点
low[x]=min(low[y],low[x]);
//如果dfn[y]>0且它不在栈中呢?
//那么y已经找到了自己的强连通分量,和x没有关系了
}
if(dfn[x]==low[x]){
//这说明x不能到达在它之前被访问的点
//那么x就是它所在的强连通分量中第一个被访问的点
//并且在这个强连通分量中的所有点已经被压入栈中
//把这些点“取出”即可
cnt++;//新强连通分量内所有的点已经找出
while(s.top()!=x){
int q=s.top();
belong[q]=cnt;
instack[q]=0;
scc[cnt].push_back(q);
s.pop();
}
belong[x]=cnt;
instack[x]=0;
scc[cnt].push_back(x);
s.pop();
} }
int n,m;
int main(){
scanf("%d%d",&n,&m);
//建图
for(int i=1;i<=m;i++){
int a,b;
scanf("%d%d",&a,&b);
add_edge(a,b);
}
for(int i=1;i<=n;i++)
if(!dfn[i])
dfs(i);
printf("%d\n",cnt);
//使用sort对每个强连通分量内的点进行升序排列(以前我也不知道)
for(int i=1;i<=cnt;++i)
sort(scc[i].begin(),scc[i].end());
for(int i=1;i<=n;i++){
int y=belong[i];
if(!printed[y]){
for(int j=0;j<scc[y].size();j++)
printf("%d ",scc[y][j]);
printf("\n");
printed[y]=1;
}
else
continue;
}
return 0;
}

强连通分量与tarjan算法初步运用的更多相关文章

  1. 有向图强连通分量的Tarjan算法

    有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...

  2. 强连通分量的Tarjan算法

    资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tar ...

  3. 【转】有向图强连通分量的Tarjan算法

    原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...

  4. 算法笔记_144:有向图强连通分量的Tarjan算法(Java)

    目录 1 问题描述 2 解决方案 1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连 ...

  5. 【转载】有向图强连通分量的Tarjan算法

    转载地址:https://www.byvoid.com/blog/scc-tarjan [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly conn ...

  6. 有向图强连通分量的Tarjan算法(转)

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  7. 『图论』有向图强连通分量的Tarjan算法

    在图论中,一个有向图被成为是强连通的(strongly connected)当且仅当每一对不相同结点u和v间既存在从u到v的路径也存在从v到u的路径.有向图的极大强连通子图(这里指点数极大)被称为强连 ...

  8. 有向图强连通分量的Tarjan算法及模板

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强联通(strongly connected),如果有向图G的每两个顶点都强联通,称有向图G是一个强联通图.非强联通图有向 ...

  9. 【强连通分量】tarjan算法及kosaraju算法+例题

    阅读前请确保自己知道强连通分量是什么,本文不做赘述. Tarjan算法 一.算法简介 Tarjan算法是一种由Robert Tarjan提出的求有向图强连通分量的时间复杂度为O(n)的算法. 首先我们 ...

随机推荐

  1. Html飞机大战(五):主角登场(英雄类编辑)

    好家伙, 遇到了一些非常奇怪的bug index.html:179 Uncaught TypeError: Failed to execute 'drawImage' on 'CanvasRender ...

  2. docker容器数据卷的使用

    什么是容器数据卷 docker的理念回顾 将应用和运行的环境打包形成容器运行,运行可以伴随着容器,但是我们对于数据的要求,是希望能够持久化的! 就好比,你安装一个MySQL,结果你把容器删了,就相当于 ...

  3. Java 9.回文数

    给你一个整数 x ,如果 x 是一个回文整数,返回 true :否则,返回 false .回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数.    例如,121 是回文,而 123 不是. ...

  4. java8 新特性 -Optional的常见用法

    1. Optional 一. 简介 Opitonal是java8引入的一个新类,目的是为了解决空指针异常问题.本质上,这是一个包含有可选值的包装类,这意味着 Optional 类既可以含有对象也可以为 ...

  5. k8s 如何关联pvc到特定的pv

    可以使用对 pv 打 label 的方式,具体如下: 创建 pv,指定 label $ cat nfs-pv2.yaml apiVersion: v1 kind: PersistentVolume # ...

  6. 重新安装kuboard后,原先配置的CI/CD命令都没了,需要重新创建

    背景介绍 使用如下命令创建的kuboard服务,上一层用nginx设置代理,用域名访问使用的 docker run -d \ --restart=always \ --name=kuboard \ - ...

  7. 等保审核 --- MySQL密码复杂度--和连接错误超时等

    系统版本: Centos 7 MySQL版本: 5.7.19 架构: 主从架构 审计插件: validate_password.so(数据库自带5.6后版本都拥有此插件) 操作过程: 1). 安装va ...

  8. vue3基础

    什么是CDN? 内容分发网络--通过相互链接的网络系统,利用最靠近用户的服务器,更快更可靠的发送给用户. vue的cdn引入 method中的函数为什么不能用this? this的主要使用是来获取da ...

  9. C#/VB.NET 读取条码类型及条码在图片中的坐标位置

    我们在创建条形码时,如果以图片的方式将创建好的条码保存到指定文件夹路径,可以在程序中直接加载图片使用:已生成的条码图片,需要通过读取图片中的条码信息,如条码类型.条码绘制区域在图片中的四个顶点坐标位置 ...

  10. Leetcode刷题笔记(双指针)

    1.何为双指针 双指针主要用来遍历数组,两个指针指向不同的元素,从而协同完成任务.我们也可以类比这个概念,推广到多个数组的多个指针. 若两个指针指向同一数组,遍历方向相同且不会相交,可以称之为滑动窗口 ...