KNN算法之集美大学
在本篇文章中,我即将以在集美大学收集到的一些数据集为基础,使用KNN算法进行一系列的操作
一、KNN算法
首先,什么是KNN算法呢,这得用到老祖宗说的一句话“近朱者赤近墨者黑”,简单来讲就是,一个物体它靠近什么,我们也可以认为它就是什么。此算法运用广泛,生活中就有体现。比如,你是否发现,你好朋友刷到的抖音视频,你也可能提前刷到过,这就是KNN。
KNN也叫K近邻(K-Nearest Neighbor, KNN)是一种最经典和最简单的有监督学习方法之一。K-近邻算法是最简单的分类器,没有显式的学习过程或训练过程,是懒惰学习(Lazy Learning)。当对数据的分布只有很少或者没有任何先验知识时,K 近邻算法是一个不错的选择。
二、K自制数据集(基于集美大学)
集美大学于1918年始建,这所大学的名字很有意思,单纯从字面上看,这是一所集美丽于一身的大学。集美大学也正如名字所说,不仅学校美,周围的环境也跟着美。因为这所大学所在的地区被当地叫做集美学村,这个集美学村是一个旅游区,其中还包含了许多学府,从小学到大学一应俱全,集美大学就在其中,这里给人的感觉很大很美,既适合出行旅游观光,又是学术氛围浓厚之地。在集美大学读书感觉犹如在旅游一般,对于学生来说是一种美好的享受。
众所周知,航海是集美大学的特色专业,我运用Excel手动制作了一些数据,内容为航海学院和其他学院的学生数据差异。航海学院纪律严格,判断一个学生是不是航海学院的学子可以从以下角度分析:clothes color(航海学院身穿制度,颜色较为统一),hair length,height。如果是航海学院则nautical college置为1。还有数据三维散点图如下。
三、代码部分(主要运用了sklearn,pandas工具包)
1.预测
file = "sklearn/file/JMU.csv"
data = pd.read_csv(file)
lable = data.iloc[:, -1]
feature = data.iloc[:, :3]
# 2.划分数据集
x_train, x_test, y_train, y_test = train_test_split(feature, lable, test_size=0.2)
#网格搜索和交叉验证
para_dic={"n_neighbors":[i for i in range(1,20)]}
estimator=KNeighborsClassifier()
estimator=GridSearchCV(estimator,param_grid=para_dic)
estimator.fit(x_train,y_train)
# 模型评估
#1.比对真实值与预测值
# y_pre=estimator.predict(x_test)
# print("y_pre:\n",y_pre)
# print(y_pre==y_test)
#2.计算准确率
score=estimator.score(x_test,y_test)
print("准确率:\n",score) # 最佳参数
print("最佳参数:\n",estimator.best_params_)
# 最佳结果
print("最佳结果:\n",estimator.best_score_)
# 最佳估计器
print("最佳估计器:\n",estimator.best_estimator_)
准确率:
0.9166666666666666
最佳参数:
{'n_neighbors': 1}
最佳结果:
0.8936170212765957
最佳估计器:
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=1, p=2,
weights='uniform')
Process finished with exit code 0
2.作图
x = data.iloc[:, 0]
y = data.iloc[:, 1]
z = data.iloc[:, 2]
# 绘制散点图
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(x, y, z, color='r') # 添加坐标轴(顺序是Z, Y, X)
ax.set_zlabel('height', fontdict={'size': 15, 'color': 'red'})
ax.set_ylabel('hair length', fontdict={'size': 15, 'color': 'red'})
ax.set_xlabel('clothes color', fontdict={'size': 15, 'color': 'red'})
plt.show()
3.结果分析
通过网格搜索1到20的K值结果可知,最优K取值为1。也就是说找最近的一位同学是否属于航海学院,就能大概率判断这位未知同学是否也为海院学子。
思考,为什么会是K=1呢,通过散点图可以清楚看出,海院学子特征比较集中,所以只要距离海院学子特征最近,就大概率为海院学子。
KNN算法之集美大学的更多相关文章
- 【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- KNN算法
1.算法讲解 KNN算法是一个最基本.最简单的有监督算法,基本思路就是给定一个样本,先通过距离计算,得到这个样本最近的topK个样本,然后根据这topK个样本的标签,投票决定给定样本的标签: 训练过程 ...
- kNN算法python实现和简单数字识别
kNN算法 算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单 ...
- 什么是 kNN 算法?
学习 machine learning 的最低要求是什么? 我发觉要求可以很低,甚至初中程度已经可以. 首先要学习一点 Python 编程,譬如这两本小孩子用的书:[1][2]便可. 数学方面 ...
- 数据挖掘之KNN算法(C#实现)
在十大经典数据挖掘算法中,KNN算法算得上是最为简单的一种.该算法是一种惰性学习法(lazy learner),与决策树.朴素贝叶斯这些急切学习法(eager learner)有所区别.惰性学习法仅仅 ...
- 机器学习笔记--KNN算法2-实战部分
本文申明:本系列的所有实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. 一案例导入:玛利亚小姐最近寂寞了, ...
- 机器学习笔记--KNN算法1
前言 Hello ,everyone. 我是小花.大四毕业,留在学校有点事情,就在这里和大家吹吹我们的狐朋狗友算法---KNN算法,为什么叫狐朋狗友算法呢,在这里我先卖个关子,且听我慢慢道来. 一 K ...
- 学习OpenCV——KNN算法
转自:http://blog.csdn.net/lyflower/article/details/1728642 文本分类中KNN算法,该方法的思路非常简单直观:如果一个样本在特征空间中的k个最相似( ...
- KNN算法与Kd树
最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知 ...
随机推荐
- Rust 从入门到精通05-数据类型
Rust 是 静态类型(statically typed)语言,也就是说在编译时就必须知道所有变量的类型. 在 Rust 中,每一个值都属于某一个 数据类型(data type),分为两大类: ①.标 ...
- java-面向对象之类、对象
什么是类?什么是对象? 1)现实世界是由很多很多对象组成的基于对象抽出了类 2)对象:真实存在的单个的个体 类:类别/类型,代表一类个体 3)类中可以包含: 3.1)所有对象所共有的属性/特征---- ...
- Java源码分析 | CharSequence
本文基于 OracleJDK 11, HotSpot 虚拟机. CharSequence 定义 CharSequence 是 java.lang 包下的一个接口,是 char 值的可读序列, 即其本身 ...
- echarts学习笔记(一)
echarts学习笔记(一) echarts开发步骤 创建一个新的html文件 在html文件head头部信息中导入echarts 声明一个容器(可以理解为画布),用于存放echarts 实例化ech ...
- 《Java编程思想》读书笔记(三)
前言:三年之前就买了<Java编程思想>这本书,但是到现在为止都还没有好好看过这本书,这次希望能够坚持通读完整本书并整理好自己的读书笔记,上一篇文章是记录的第十一章到第十六章的内容,这一次 ...
- Linux或Docker里安装minio / Docker中安装h5ai
此文为单节点搭建操作 Linux中搭建minio 对象存储服务器 下载minio安装包 wget https://dl.minio.io/server/minio/release/linux-amd6 ...
- 使用Dockfile构建mysql镜像与初始化运行mysql容器
使用docker 构建mysql镜像,并在容器初次创建时初始化数据 Dockerfile FROM mysql:5.7.23 MAINTAINER gradyjiang "jiangzhon ...
- JDK 自带的服务发现框架 ServiceLoader 好用吗?
请点赞关注,你的支持对我意义重大. Hi,我是小彭.本文已收录到 Github · AndroidFamily 中.这里有 Android 进阶成长知识体系,有志同道合的朋友,关注公众号 [彭旭锐] ...
- Jmeter中的JSON提取器用法
一.使用前提 一般来说JSON提取器只适用于响应结果中返回的是json数据 二.需求 在下一个接口调用上一个接口的数据,如:请求1返回的结果,处理以后作为请求2的参数使用. 首先需要下载JSON Ex ...
- 国产CPLD(AGM1280)试用记录——做个SPI接口的任意波形DDS [原创www.cnblogs.com/helesheng]
我之前用过的CPLD有Altera公司的MAX和MAX-II系列,主要有两个优点:1.程序存储在片上Flash,上电即行,保密性高.2.CPLD器件规模小,成本和功耗低,时序不收敛情况也不容易出现.缺 ...