问题描述

给定一个 DAG,求一个拓扑序,使得节点 \(i\) 的拓扑序 \(\in [l_i,r_i]\)。

题解

首先进行一个预处理:对于所有 \(u\),令 \(\forall (v,u)\in E, l_u\leftarrow \max(l_u,l_v+1),\forall (u,v)\in E, r_u\leftarrow \min(r_u,r_v-1)\)。

也就是 \(l_u\) 对任何可能的拓扑序的最小值取 \(\max\),\(r_u\) 同理。若此时有节点 \(l_u>r_u\) 则无解。

将所有区间按 \(r\) 端点排序,然后以 \(l\) 端点为关键字插入大根堆中。从大到小依次考虑拓扑序 \(i\) 应为哪个节点,将所有 \(r_u\ge i\) 的节点插入堆中,然后取出 \(l_u\) 最大的,若 \(l_u>i\) 则显然无解,否则直接令 \(topo_i=u\),弹堆。由贪心交换性质应该可以证明这是可能的最优情况,如果这样都无解那么一定无解。至于正确性,我们发现如果当前存在 \(j>i\) 使得 \((topo_j,topo_i)\in E\),则会有 \(l_{topo[i]}>l_{topo[j]}\),与每次取出 \(l\) 最大的区间矛盾。

经典问题 1 —— DAG 上区间限制拓扑序的更多相关文章

  1. bzoj 1880 [Sdoi2009]Elaxia的路线(最短路+拓扑序)

    Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w**每天都要奔波于宿舍和实验室之间, ...

  2. [正经分析] DAG上dp两种做法的区别——拓扑序与SPFA

    在下最近刷了几道DAG图上dp的题目. 要提到的第一道是NOIP原题<最优贸易>.这是一个缩点后带点权的DAG上dp,它同时规定了起点和终点. 第二道是洛谷上的NOI导刊题目<最长路 ...

  3. Codeforce 721C DP+DAG拓扑序

    题意 在一个DAG上,从顶点1走到顶点n,路径上需要消费时间,求在限定时间内从1到n经过城市最多的一条路径 我的做法和题解差不多,不过最近可能看primer看多了,写得比较复杂和结构化 自己做了一些小 ...

  4. NYOJ_矩形嵌套(DAG上的最长路 + 经典dp)

    本题大意:给定多个矩形的长和宽,让你判断最多能有几个矩形可以嵌套在一起,嵌套的条件为长和宽分别都小于另一个矩形的长和宽. 本题思路:其实这道题和之前做过的一道模版题数字三角形很相似,大体思路都一致,这 ...

  5. DP入门(2)——DAG上的动态规划

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.DAG模型 [嵌套矩形问题] 问题 ...

  6. 9.2 DAG上的动态规划

    在有向无环图上的动态规划是学习动态规划的基础,很多问题都可以转化为DAG上的最长路,最短路或路径计数问题 9.2.1 DAG模型 嵌套矩形问题: 矩形之间的可嵌套关系是一种典型的二元关系,二元关系可以 ...

  7. [HAOI2012]道路(最短路DAG上计数)

    C国有n座城市,城市之间通过m条[b]单向[/b]道路连接.一条路径被称为最短路,当且仅当不存在从它的起点到终点的另外一条路径总长度比它小.两条最短路不同,当且仅当它们包含的道路序列不同.我们需要对每 ...

  8. NOIP2017提高组Day1T3 逛公园 洛谷P3953 Tarjan 强连通缩点 SPFA 动态规划 最短路 拓扑序

    原文链接https://www.cnblogs.com/zhouzhendong/p/9258043.html 题目传送门 - 洛谷P3953 题目传送门 - Vijos P2030 题意 给定一个有 ...

  9. [NOIP2017]逛公园 最短路图 拓扑序DP

    ---题面--- 题解: 挺好的一道题. 首先我们将所有边反向,跑出n到每个点的最短路,然后f[i][j]表示从i号节点出发,路径长比最短路大j的方案数. 观察到,如果图中出现了0环,那么我们可以通过 ...

  10. DAG上dp思想

    DAG上DP的思想 在下最近刷了几道DAG图上dp的题目.要提到的第一道是NOIP原题<最优贸易>.这是一个缩点后带点权的DAG上dp,它同时规定了起点和终点.第二道是洛谷上的NOI导刊题 ...

随机推荐

  1. k8s集群正常kubectl用不了

    今天有个客户反馈k8s集群服务正常,业务也正常.kubectl get no敲入这个命令就有夯住了 仔细去检查配置发现少了一个config 最后在master-2上的config文件cp拷一份过来问题 ...

  2. Codeforces Round #828 (Div. 3) E2. Divisible Numbers (分解质因子,dfs判断x,y)

    题目链接 题目大意 给定a,b,c,d四个数,其中a<c,b<c,现在让你寻找一对数(x,y),满足一下条件: 1. a<x<c,b<y<d 2. (x*y)%(a ...

  3. 带你了解NLP的词嵌入

    摘要:今天带领大家学习自然语言处理中的词嵌入的内容. 本文分享自华为云社区<[MindSpore易点通]深度学习系列-词嵌入>,作者:Skytier. 1 特征表示 在自然语言处理中,有一 ...

  4. clickhouse在风控-风险洞察领域的探索与实践

    一.风险洞察平台介绍 以Clickhouse+Flink实时计算+智能算法为核心架构搭建的风险洞察平台, 建立了全面的.多层次的.立体的风险业务监控体系,已支撑欺诈风险.信用风险.企业风险.小微风险. ...

  5. SpringBoot3正式版将于11月24日发布:都有哪些新特性?

    从 2018 年 2 月 28 号发布 Spring Boot 2.0 版本开始,整个 2.X 版本已经经过了 4 年多的时间,累计发布了 95 个不同的版本,而就在前不久,2.X 系列的也已经迎来了 ...

  6. K8S之prometheus-operator监控

    prometheus-operator 1. Prometheus Operator介绍 介绍文章:http://t.zoukankan.com/twobrother-p-11164391.html ...

  7. bugku web基础$_POST

    这道题也是让what=flag就行了 直接试试通过max hackbar来进行post传入 得到flag

  8. ARM MMU架构 -- CPU如何访问MMU及DRAM

    <ARM Architecture Reference Manual ARMv8-A>里面有Memory层级框架图,从中可以看出L1.L2.DRAM.Disk.MMU之间的关系,以及他们在 ...

  9. JDK动态代理深入剖析

    1 基于接口的代理模式 什么是代理? 简单来说,代理是指一个对象代替另一个对象去做某些事情. 例如,对于每个程序员来说,他都有编程的能力: interface Programmable { void ...

  10. 【Devexpres】spreadsheetControl设置可见范围

    // 获得当前电子表格的工作簿 Worksheet worksheet = spreadsheetControl.ActiveWorksheet; // 获得当前用户数据范围 CellRange us ...