在进行多卡训练的时候,经常会出现GPU利用率上不来的情况,无法发挥硬件的最大实力。 造成这种现象最有可能的原因是,CPU生成数据的能力,已经跟不上GPU处理数据的能力。


方法一


常见的方法为修改Dataloader里面的线程数量,利用多线程技术提高数据生产能力,但是这种方法提速并不是特别明显。

train_loader = DataLoader(dataset, batch_size,shuffle=True, num_worker=4)

而且windows机器上,num_worker大于0时,有时会出现卡死的情况,这应该是pytorch的bug,因此不是特别建议这种方法。

不过这种方法最简单,还是可以尝试一下更改线程数能否缓解你遇到的问题。nun_worker一般设置为处理器的物理线程数,不宜过大,因为会导致额外的线程开销。

方法二


本文主要介绍第二种方法,也就是Data Prefetcher,最早见于NVIDIA APEX

这里我把代码抠出来了,删除掉了一些不必要的注释,可以将其复用到自己的项目里来。

import torch

class data_prefetcher():
def __init__(self, loader):
self.loader = iter(loader)
self.stream = torch.cuda.Stream()
self.mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).cuda().view(1,3,1,1)
self.std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).cuda().view(1,3,1,1)
self.preload() def preload(self):
try:
self.next_input, self.next_target = next(self.loader)
except StopIteration:
self.next_input = None
self.next_target = None
return with torch.cuda.stream(self.stream):
self.next_input = self.next_input.cuda(non_blocking=True)
self.next_target = self.next_target.cuda(non_blocking=True)
self.next_input = self.next_input.float()
self.next_input = self.next_input.sub_(self.mean).div_(self.std) def next(self):
torch.cuda.current_stream().wait_stream(self.stream)
input = self.next_input
target = self.next_target
if input is not None:
input.record_stream(torch.cuda.current_stream())
if target is not None:
target.record_stream(torch.cuda.current_stream())
self.preload()
return input, target

首先我们来看初始化函数,在初始化函数中,会直接调用preload,所以当这个对象初始化时,就会生成第一份的输入数据。

核心逻辑也就在预加载函数preload中,其中第13行是从原来的dataloader中取数,这一步和常规数据加载没有差别。有差别的是第19行,这里出现了Stream的概念。

一般来说,CUDA程序默认都运行在同一个Stream上,因此CPU->GPU,GPU->GPU以及GPU->CPU的一系列计算都是在同一个Stream里面串行运行的。 深度学习一般流程是先从dataloader中取数,这里是内存->CPU的运算,然后执行to_device操作,让数据从CPU->GPU,再是GPU->GPU的神经网络计算。

代码19行,使得data_prefetecher这个类是单独运行在一个Stream上的,因此它让数据加载和神经网络计算可以并行执行,也就加速了整体的运行速度。这样做带来的负面结果就是GPU同时在做两项任务,所以显存占用会增加。

这里不知道解释清楚没有,建议去看一下原作者的回答link

另外,重要的是,使用这个方法的时候一定要将Dataloader里面的pin_memory设置为True。

使用方法如下,非常简单,改造前是从dataloader里取数,改造后是将dataloader包在prefetecher里面,从prefetecher里面取数。

train_loader = DataLoader(dataset, batch_size,shuffle=True, num_worker=4,pin_memory=True)
prefetcher = data_prefetcher(train_loader)
input, target = prefetcher.next() while input is not None:
##
前后向计算...
###
input, target = prefetcher.next()

Pytorch Dataloader加速的更多相关文章

  1. pytorch :: Dataloader中的迭代器和生成器应用

    在使用pytorch训练模型,经常需要加载大量图片数据,因此pytorch提供了好用的数据加载工具Dataloader. 为了实现小批量循环读取大型数据集,在Dataloader类具体实现中,使用了迭 ...

  2. [Pytorch]PyTorch Dataloader自定义数据读取

    整理一下看到的自定义数据读取的方法,较好的有一下三篇文章, 其实自定义的方法就是把现有数据集的train和test分别用 含有图像路径与label的list返回就好了,所以需要根据数据集随机应变. 所 ...

  3. pytorch dataloader num_workers

    https://discuss.pytorch.org/t/guidelines-for-assigning-num-workers-to-dataloader/813/5 num_workers 影 ...

  4. pytorch dataloader 取batch_size时候 出现bug

    1.RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 342 and 2 ...

  5. PyTorch DataLoader NumberWorkers Deep Learning Speed Limit Increase

    这意味着训练过程将按顺序在主流程中工作. 即:run.num_workers.   ,此外, ,因此,主进程不需要从磁盘读取数据:相反,这些数据已经在内存中准备好了. 这个例子中,我们看到了20%的加 ...

  6. 【深度学习】Pytorch 学习笔记

    目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07 ...

  7. [源码解析] PyTorch 分布式(9) ----- DistributedDataParallel 之初始化

    [源码解析] PyTorch 分布式(9) ----- DistributedDataParallel 之初始化 目录 [源码解析] PyTorch 分布式(9) ----- DistributedD ...

  8. [源码解析] PyTorch 分布式(10)------DistributedDataParallel 之 Reducer静态架构

    [源码解析] PyTorch 分布式(10)------DistributedDataParallel之Reducer静态架构 目录 [源码解析] PyTorch 分布式(10)------Distr ...

  9. [源码解析] PyTorch 分布式(11) ----- DistributedDataParallel 之 构建Reducer

    [源码解析] PyTorch 分布式(11) ----- DistributedDataParallel 之 构建Reducer 目录 [源码解析] PyTorch 分布式(11) ----- Dis ...

随机推荐

  1. js 前端实现下拉刷新 上拉加载

    效果 css html,body{ height:100%; // 其他界面未设置html 无法监听scroll } /* 下拉刷新 */ .refresh-loading { transition: ...

  2. 用python实现matlib的 生成高斯模糊核

    最近在做一个关于模糊图片恢复的数学建模,遇到了一个大问题,特记录一下. 在matlib中有  PSF = fspecial('motion', LEN, THETA);  来生成模糊核函数,但在pyt ...

  3. 《计算机组成原理/CSAPP》网课总结(二)——编译原理基础

    这部分是四月份的安排,拖到五一放假了,主要是对源码编译过程的一次总结,总的来说,大致可分为预编译.编译.汇编和链接四部分.这里简单记录一下: 一 概述 1.预处理 或者说是预编译,指的是在编译前需要做 ...

  4. Centos 7防火墙策略配置指南

    Centos 7防火墙策略配置指南 -- 清听凌雪慕忆 @ 目录 1. 开启防火墙 1.1 user切换到root用户 1.2 查看防火墙服务状态 1.3 查看firewall的状态 1.4 启动/关 ...

  5. latex中显示代码

    如何在latex中添加代码模块 首先在开头导入以下的包 \usepackage{listings} \usepackage{ctex} % 用来设置附录中代码的样式 \lstset{ basicsty ...

  6. 2. 假设当前文件夹中data.csv文件中存放了2020年某饭店营业额,第一列为日期(如2020-02-03),第二列为每天交易额(如3560),文件中第一行为表头,其余行为实 际数据。

    假设当前文件夹中data.csv文件中存放了2020年某饭店营业额,第一列为日期(如2020-02-03),第二列为每天交易额(如3560),文件中第一行为表头,其余行为实  际数据.编写程序,完成下 ...

  7. 性能测试:tcpcopy

    简介 TCPCopy是一种请求复制(所有基于tcp的packets)工具,可以把在线流量导入到测试系统中去. 曾经应用于网易的广告投放系统,urs系统,nginx hmux协议等系统,避免了上线带来的 ...

  8. 基于 BaGet 搭建 Nuget 服务器

    1 前言 1.1 BaGet 介绍 BaGet 是一个轻量级的,开源的,跨平台的 Nuget 和 symbol 服务器. 1.2 环境介绍 操作系统:CentOS 7 使用 Docker 安装 2 安 ...

  9. linux系统下文件误删除该如何恢复?

    一.linux误删除数据的场景 在实际的工作中,朋友们可能会将linux服务器上的文件不小心误删除掉了.而且越是资历老的工程师越容易犯这样的错误,敲代码的速度也是够快,啪啪rm -rf一个回车,然后就 ...

  10. STC8H开发(十一): GPIO单线驱动多个DS18B20数字温度计

    目录 STC8H开发(一): 在Keil5中配置和使用FwLib_STC8封装库(图文详解) STC8H开发(二): 在Linux VSCode中配置和使用FwLib_STC8封装库(图文详解) ST ...