CF1430F Realistic Gameplay (贪心+DP)
朴素做法暴力DP,O(nk)过不去。。。
1 #include <cmath>
2 #include <cstdio>
3 #include <cstring>
4 #include <algorithm>
5 #define N1 2005
6 #define ll long long
7 using namespace std;
8
9 int n,p;
10 int l[N1],r[N1],a[N1];
11 ll f[N1][N1];
12 ll linf=0x3f3f3f3f3f3fll;
13
14 int main()
15 {
16 freopen("a.txt","r",stdin);
17 scanf("%d%d",&n,&p);
18 for(int i=1;i<=n;i++) scanf("%d%d%d",&l[i],&r[i],&a[i]);
19 for(int i=0;i<=n;i++) for(int k=0;k<=p;k++) f[i][k]=linf;
20 f[0][p]=0; l[n+1]=r[n]+1;
21 for(int i=1;i<=n;i++)
22 {
23 for(int k=0;k<p;k++)
24 {
25 if(a[i]%p<=k)
26 {
27 if(a[i]/p<=r[i]-l[i])
28 {
29 f[i][k-a[i]%p]=f[i-1][k]+a[i]/p;
30 if(a[i]/p+1<=l[i+1]-l[i]) f[i][p]=min(f[i][p],f[i-1][k]+a[i]/p+1);
31 }
32 }
33 if(a[i]%p>k)
34 {
35 if(a[i]/p+1<=r[i]-l[i])
36 {
37 f[i][k+p-a[i]%p]=f[i-1][k]+a[i]/p+1;
38 if(a[i]/p+2<=l[i+1]-l[i]) f[i][p]=min(f[i][p],f[i-1][k]+a[i]/p+2);
39 }
40 }
41 }
42 if(a[i]%p)
43 {
44 if(a[i]/p<=r[i]-l[i])
45 {
46 f[i][p-a[i]%p]=f[i-1][p]+a[i]/p;
47 if(a[i]/p+1<=l[i+1]-l[i]) f[i][p]=min(f[i][p],f[i-1][p]+a[i]/p+1);
48 }
49 }else{
50 if(a[i]/p-1<=r[i]-l[i])
51 {
52 f[i][0]=f[i-1][p]+a[i]/p-1;
53 if(a[i]/p<=l[i+1]-l[i]) f[i][p]=min(f[i][p],f[i-1][p]+a[i]/p);
54 }
55 }
56
57 }
58 ll ans=linf;
59 for(int k=0;k<=p;k++) ans=min(ans,f[n][k]*p+p-k);
60 if(ans==linf) puts("-1"); else printf("%lld\n",ans);
61 return 0;
62 }
先考虑贪心这个过程
对于从i开始连续的几波,如果我们只进行不浪费子弹的换弹,我们都可以到达那些波,同时记录到达这些波换的弹夹数g[i][j],处理出这两个数组的时间是O(n),总时间O(n^2)
然后进行DP,f[i]记录答案,表示处理完前i-1波消耗的子弹数,那么f[i]可以由所有贪心到达i-1的点j转移过来,f[i]=min(f[j]+g[j][i-1]*p),注意如果i和i-1之间有间隙时间,是可以转移的
总结:贪心可以处理时间充裕的情况,而DP则用来求解必须满弹开始的情况
1 #include <cmath>
2 #include <cstdio>
3 #include <cstring>
4 #include <algorithm>
5 #define N1 2005
6 #define ll long long
7 using namespace std;
8
9 int n,p;
10 int l[N1],r[N1],a[N1];
11 ll f[N1],g[N1][N1],Rem[N1];
12 bool ok[N1][N1];
13 ll linf=0x3f3f3f3f3f3fll;
14 int divup(int x,int y)
15 {
16 if(x%y) return x/y+1;
17 else return x/y;
18 }
19
20 int main()
21 {
22 // freopen("a.txt","r",stdin);
23 scanf("%d%d",&n,&p);
24 for(int i=1;i<=n;i++) scanf("%d%d%d",&l[i],&r[i],&a[i]);
25 int rem,cnt,tim,num;
26 for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) g[i][j]=linf;
27 for(int i=2;i<=n;i++) f[i]=linf;
28 for(int i=1;i<=n;i++)
29 {
30 //greedy
31 num=divup(a[i],p);
32 if(num-1<=r[i]-l[i]) //start with full
33 {
34 g[i][i]=cnt=num, rem=num*p-a[i];
35 Rem[i]=rem;
36 if(num<=r[i]-l[i]) //supply if empty
37 {
38 ok[i][i]=1;
39 if(rem==0) rem=p, cnt++;
40 }
41 for(int j=i+1;j<=n;j++) //never throw away remaining bullets
42 {
43 if(rem>a[j]){
44 rem-=a[j], g[i][j]=cnt;
45 }else{
46 num=divup(a[j]-rem,p); //never reload between consecutive waves
47 if(num<=r[j]-l[j]) g[i][j]=cnt=cnt+num, rem=num*p+rem-a[j];
48 else{
49 break;
50 }
51 }
52 Rem[i]=rem;
53 if(num+1<=r[j]-l[j])
54 {
55 if(rem==0) rem=p, cnt++;//supply if empty
56 ok[i][j]=1;
57 }
58 }
59 }else{
60 puts("-1"); return 0;
61 }
62 }
63 f[1]=0;
64 for(int i=2;i<=n;i++)
65 {
66 //DP
67 for(int j=1;j<i;j++)
68 {
69 if(g[j][i-1]!=linf && (ok[j][i-1] || r[i-1]<l[i] ) )
70 f[i]=min(f[i],f[j]+g[j][i-1]*p);
71 }
72 }
73 ll ans=linf;
74 for(int i=1;i<=n;i++)
75 if(g[i][n]<linf/2) ans=min(ans,f[i]+g[i][n]*p-Rem[i]);
76 if(ans>=linf/2) puts("-1"); else printf("%lld\n",ans);
77 return 0;
78 }
79
CF1430F Realistic Gameplay (贪心+DP)的更多相关文章
- 【BZOJ-3174】拯救小矮人 贪心 + DP
3174: [Tjoi2013]拯救小矮人 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 686 Solved: 357[Submit][Status ...
- BZOJ_3174_[Tjoi2013]拯救小矮人_贪心+DP
BZOJ_3174_[Tjoi2013]拯救小矮人_贪心+DP Description 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀 ...
- 洛谷P4823 拯救小矮人 [TJOI2013] 贪心+dp
正解:贪心+dp 解题报告: 传送门! 我以前好像碰到过这题的说,,,有可能是做过类似的题qwq? 首先考虑这种显然是dp?就f[i][j]:决策到了地i个人,跑了j个的最大高度,不断更新j的上限就得 ...
- 【bzoj5073】[Lydsy1710月赛]小A的咒语 后缀数组+倍增RMQ+贪心+dp
题目描述 给出 $A$ 串和 $B$ 串,从 $A$ 串中选出至多 $x$ 个互不重合的段,使得它们按照原顺序拼接后能够得到 $B$ 串.求是否可行.多组数据. $T\le 10$ ,$|A|,|B| ...
- 【bzoj3174】[Tjoi2013]拯救小矮人 贪心+dp
题目描述 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口.对于每一个小矮人,我们知道他从脚 ...
- hdu 1257 最少拦截系统【贪心 || DP——LIS】
链接: http://acm.hdu.edu.cn/showproblem.php?pid=1257 http://acm.hust.edu.cn/vjudge/contest/view.action ...
- 贪心+DP【洛谷P4823】 [TJOI2013]拯救小矮人
P4823 [TJOI2013]拯救小矮人 题目描述 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以 ...
- 贪心+dp
贪心+dp 好多题都是这个思想, 可以说是非常重要了 思想一: 在不确定序列无法dp的情况下, 我们不妨先假设序列已经选定, 而利用贪心使序列达到最优解, 从而先进行贪心排序, 在进行dp选出序列 思 ...
- 【题解】CF1056F Write the Contest(三分+贪心+DP)
[题解]CF1056F Write the Contest(三分+贪心+DP) 最优化问题的三个解决方法都套在一个题里了,真牛逼 最优解应该是怎样的,一定存在一种最优解是先完成了耗时长的任务再干别的( ...
随机推荐
- Solution -「JOISC 2021」「LOJ #3491」道路建设
\(\mathcal{Description}\) Link. 平面上有 \(n\) 个互不重合的点 \((x_{1..n},y_{1..n})\),求其两两曼哈顿距离的前 \(m\) 小值. ...
- shell切割nginx日志
用linux自带的计划任务切割nginx日志,每天0点执行 #!/bin/bash #GuoYabin nginxpid=`/bin/ps aux|grep nginx |awk /master/'{ ...
- RTP包中timestamp的间隔问题
概述 近期在和同事调试G729的编解码库时碰到一个语音质量的问题,问题产生的原因和RTP包中的时间戳设置有关,特此记录下来. 问题现象,1001和1002账号注册在fs,媒体设置为G729并通过fs中 ...
- Meterpreter核心命令
实验目的 掌握Meterpreter常见的基本命令的使用 实验原理 1.Meterpreter介绍 meterpreter是metasploit框架中的一个扩展模块,作为溢出成功以后的攻击载荷使用,攻 ...
- 『无为则无心』Python基础 — 61、Python中的迭代器
目录 1.迭代的概念 2.迭代器的概念 3.可迭代的对象(Iterable) 4.迭代器对象(Iterator) 5.迭代器的使用体验 (1)基本用法 (2)实际应用 1.迭代的概念 (1)什么是迭代 ...
- Devops 开发运维高级篇之Jenkins+Docker+SpringCloud微服务持续集成——部署方案优化
Devops 开发运维高级篇之Jenkins+Docker+SpringCloud微服务持续集成--部署方案优化 之前我们做的方案部署都是只能选择一个微服务部署并只有一台生产服务器,每个微服务只有一个 ...
- 【biee】BIEE启动关闭服务
转至:http://blog.sina.com.cn/s/blog_7e04e0d00101k5r8.html 版本:BIEE11g (11.1.1.6.0-11.1.1.6.7) OS:RHEL 5 ...
- Java:Path与Paths
0.说明 用于读Path操作的接口(Path)与实现类(Paths) 1.模块:java.nio.file.Path.java.nio.file.Paths 2.方法 2.1.Paths 只有两个静态 ...
- C# 字符串、数组和List的截取和转换
using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using S ...
- 为 CmakeLists.txt 添加 boost 组件
目录 为 CmakeLists.txt 添加 boost 组件 Boost 常用组件 1.时间与日期 timer, date_time, chrono 2.内存管理 system 3.实用工具库 4. ...