luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp)
luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp)
题外话:
我可能是傻逼,
但不管我是不是傻逼,
我永远单挑出题人。
题解时间
看数据范围可以确定状压dp。
$ dp[s] $ 表示s集合去代替前几个数的话现有部分的最小结果。
将数组转化成数字之间的带权图,预处理集合和点之间的单向边数量就能解决。
对于一对相邻的转化完之后数 $ a,b $ ,贡献为
ka+kb(a>b)
\]
由此状压dp得出解。
时间复杂度实际上比 $ O( m 2^{m} ) $ 低的多可以过,
但这样由于空间限制只有70pts:
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long lint;
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
namespace RKK
{
const int N=21,S=1<<21;
int n,m,c,ful;
int lb[S],cb[S];
int a[100011];
int mg[N][N],mp[S][N],mn[N][S];
int dp[S];
int main()
{
read(n),read(m),read(c),ful=1<<m;
for(int i=1;i<ful;i++) lb[i]=(i&1)?0:lb[i>>1]+1,cb[i]=cb[i>>1]+(i&1);
for(int i=1;i<=n;i++) read(a[i]),a[i]--;
for(int i=2;i<=n;i++) mg[a[i-1]][a[i]]++;
for(int i=0;i<m;i++)for(int s=1;s<ful;s++)
{
mp[s][i]=mp[s^(s&-s)][i]+mg[lb[s]][i];
mn[i][s]=mn[i][s^(s&-s)]+mg[i][lb[s]];
}
memset(dp,0x3f,sizeof(dp)),dp[0]=0;
for(int s=1,t=s,i,ss,su;s<ful;s++,t=s)
{
while(t)
{
i=lb[t],t^=(t&-t),ss=s^(1<<i),su=(ful-1)^s;
dp[s]=min(dp[s],dp[ss]+cb[s]*(mp[ss][i]+c*mn[i][ss]-mn[i][su]+c*mp[su][i]));
}
}
printf("%d\n",dp[ful-1]);
return 0;
}
}
int main(){return RKK::main();}
稍微(确信)改造一下,让上面预处理出来的连边值随着dp不断更新就能解决空间问题。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long lint;
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
namespace RKK
{
const int N=23,S=1<<23;
int n,m,c,ful;
int lb[S],cb[S];
int a[100011];
int mn[N][N],mp[N][N],lst[N][N],nw[N];
int dp[S];
int main()
{
read(n),read(m),read(c),ful=1<<m;
for(int i=1;i<ful;i++) lb[i]=(i&1)?0:lb[i>>1]+1,cb[i]=cb[i>>1]+(i&1);
for(int i=1;i<=n;i++) read(a[i]),a[i]--;
for(int i=2;i<=n;i++)if(a[i]!=a[i-1])
mn[a[i-1]][a[i]]+=-1,mn[a[i]][a[i-1]]+=c,
mp[a[i]][a[i-1]]+=1,mp[a[i-1]][a[i]]+=c;
for(int i=0;i<m;i++)
{
for(int j=0;j<m;j++) lst[i][j]=mn[i][j]-mp[i][j],nw[i]+=mn[i][j];
for(int j=1;j<m;j++) lst[i][j]+=lst[i][j-1];
}
memset(dp,0x3f,sizeof(dp)),dp[0]=0;
for(int s=0,t,i;s<ful-1;s++)
{
if(s)for(i=0;i<m;i++) nw[i]+=mp[i][lb[s]]-mn[i][lb[s]];
if(lb[s])for(i=0;i<m;i++) nw[i]+=lst[i][lb[s]-1];
t=(ful-1)^s;while(t)
{
i=lb[t],t^=t&-t;
dp[s|(1<<i)]=min(dp[s|(1<<i)],dp[s]+nw[i]*cb[s|(1<<i)]);
}
}
printf("%d\n",dp[ful-1]);
return 0;
}
}
int main(){return RKK::main();}
luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp)的更多相关文章
- 题解 P6622 [省选联考 2020 A/B 卷] 信号传递
洛谷 P6622 [省选联考 2020 A/B 卷] 信号传递 题解 某次模拟赛的T2,考场上懒得想正解 (其实是不会QAQ), 打了个暴力就骗了\(30pts\) 就火速溜了,参考了一下某位强者的题 ...
- luoguP6619 [省选联考 2020 A/B 卷]冰火战士(线段树,二分)
luoguP6619 [省选联考 2020 A/B 卷]冰火战士(线段树,二分) Luogu 题外话1: LN四个人切D1T2却只有三个人切D1T1 很神必 我是傻逼. 题外话2: 1e6的数据直接i ...
- [省选联考 2020 A/B 卷] 冰火战士
一.题目 点此看题 二.解法 其实这道题也不是特别难吧 \(......\) 但树状数组上二分是我第一次见. 我们把冰人和火人都按温度排序,那么考虑一个分界线 \(x\) ,问题就是求冰数组 \(x\ ...
- [省选联考 2020 A 卷] 组合数问题
题意 [省选联考 2020 A 卷] 组合数问题 想法 自己在多项式和数论方面还是太差了,最近写这些题都没多少思路,看完题解才会 首先有这两个柿子 \(k*\dbinom{n}{k} = n*\dbi ...
- luoguP6623 [省选联考 2020 A 卷] 树(trie树)
luoguP6623 [省选联考 2020 A 卷] 树(trie树) Luogu 题外话: ...想不出来啥好说的了. 我认识的人基本都切这道题了. 就我只会10分暴力. 我是傻逼. 题解时间 先不 ...
- luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数)
luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数) Luogu 题外话: LN切这题的人比切T1的多. 我都想到了组合意义乱搞也想到可能用斯特林数为啥还是没做出来... 我怕 ...
- luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理)
luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理) Luogu 题外话: Day2一题没切. 我是傻逼. 题解时间 某种意义上说刻在DNA里的柿子,大概是很多人学 ...
- [省选联考 2021 A/B 卷] 卡牌游戏
垃圾福建垫底选手来看看这题. 大家怎么都写带 \(log\) 的. 我来说一个线性做法好了. 那么我们考虑枚举 \(k\) 作为翻转完的最小值. 那么构造出一个满足条件的操作,我们在 \(a_i\) ...
- 洛谷P6623——[省选联考 2020 A 卷] 树
传送门:QAQQAQ 题意:自己看 思路:正解应该是线段树/trie树合并? 但是本蒟蒻啥也不会,就用了树上二次差分 (思路来源于https://www.luogu.com.cn/blog/dengy ...
随机推荐
- Solution -「LOCAL」「cov. 牛客多校 2020 第三场 I」礼物
\(\mathcal{Description}\) 给定排列 \(\{a_n\}\),求字典序第 \(K\) 大的合法排列 \(\{b_n\}\).称一个排列 \(\{p_n\}\) 合法,当且仅 ...
- .NET官方封装的Win32API类库
大部分朋友在使用C#.NET调用Win32API时都不清楚API函数的声明,要么就是抄网上的代码,但是总会遇到各种各样奇奇怪怪难以解决的问题,打算自己封装又发现工作量实在太大. 其实完全没有必要自己动 ...
- head 插件 Content-Type header [application/x-www-form-urlencoded] is not supported
{ "error": "Content-Type header [application/x-www-form-urlencoded] is not supported& ...
- 添加删除系统右键菜单(就是上下文菜单,也就是Context Menu)中的一些选项
随着电脑安装的东西越来越多,右侧菜单也原来越长,很不方面.所以打算清理一下 我删除的大约以下几个,友好一点的都可以配置.当然也可以通过注册表直接删除. 特:注册表备份,即导入导出,避免一失足成千古恨. ...
- 「BUAA OO Pre」 Pre 2总结回顾概览
「BUAA OO Pre」 Pre 2总结回顾概览 目录 「BUAA OO Pre」 Pre 2总结回顾概览 Part 0 前言 写作背景 定位 您可以在这里期望获得 您在这里无法期望获得 对读者前置 ...
- const 和指针之间的姻缘
const和指针到底有何姻缘呢? char const *p = NULL; //char const 和 const char 是一样的,p 是一个指向常整型的指针变量 ,指针变量的值不能改变 ch ...
- 内网流量操控---pingtunnel建立icmp隧道
一.pingtunnel工作原理 在上面的实验环境中,我们将分别在攻击机kali 2020和webserver上部署pingtunnel工具,在量太主机之间实现icmp隧道,再在kali2020上监听 ...
- python数据结构:数组和列表
线性结构有两种:数组和列表 array和list 其中list各项操作的时间复杂度如下 因为insert是在头部插入 所以列表所有元素后移,时间复杂度为O(n) remove移除列表中某个值的第一个匹 ...
- 打破刻板印象,了解真正的商业智能BI
在技术飞速发展的过程中,人们越来越怀疑传统的数据分析方法.可以通过对商业智能的各种误解来解释这一点,如今,这种误解正在作为有效的真理传播.例如,数据仓库已达到其目标.而数据质量似乎也正在失去其相关性 ...
- 如何利用Smartbi做数据分析:2018内5月热销乘用车分析报告
在2018年第一季度热销乘用车分析报告中,SUV以总体销量15.4%的同比增长率让人不可小觑,Smartbi刚得到5月分析的数据就迫不及待的来看看是否热度不减,结果在5月这个所谓汽车销售淡季,轿车以9 ...