// Author: John McCullock
// Date: 10-15-05
// Description: Elman Network Example 1.
//http://www.mnemstudio.org/neural-networks-elman.htm
#include <iostream>
#include <iomanip>
#include <cmath>
#include <string>
#include <ctime>
#include <cstdlib> using namespace std; const int maxTests = 10000;
const int maxSamples = 4; const int inputNeurons = 6;
const int hiddenNeurons = 3;
const int outputNeurons = 6;
const int contextNeurons = 3; const double learnRate = 0.2; //Rho.
const int trainingReps = 2000; //beVector is the symbol used to start or end a sequence.
double beVector[inputNeurons] = {1.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // 0 1 2 3 4 5
double sampleInput[3][inputNeurons] = {{0.0, 0.0, 0.0, 1.0, 0.0, 0.0},
{0.0, 0.0, 0.0, 0.0, 0.0, 1.0},
{0.0, 0.0, 1.0, 0.0, 0.0, 0.0}}; //Input to Hidden weights (with biases).
double wih[inputNeurons + 1][hiddenNeurons]; //Context to Hidden weights (with biases).
double wch[contextNeurons + 1][hiddenNeurons]; //Hidden to Output weights (with biases).
double who[hiddenNeurons + 1][outputNeurons]; //Hidden to Context weights (no biases).
double whc[outputNeurons + 1][contextNeurons]; //Activations.
double inputs[inputNeurons];
double hidden[hiddenNeurons];
double target[outputNeurons];
double actual[outputNeurons];
double context[contextNeurons]; //Unit errors.
double erro[outputNeurons];
double errh[hiddenNeurons]; void ElmanNetwork();
void testNetwork();
void feedForward();
void backPropagate();
void assignRandomWeights();
int getRandomNumber();
double sigmoid(double val);
double sigmoidDerivative(double val); int main(){ cout << fixed << setprecision(3) << endl; //Format all the output.
srand((unsigned)time(0)); //Seed random number generator with system time.
ElmanNetwork();
testNetwork(); return 0;
} void ElmanNetwork(){
double err;
int sample = 0;
int iterations = 0;
bool stopLoop = false; assignRandomWeights(); //Train the network.
do { if(sample == 0){
for(int i = 0; i <= (inputNeurons - 1); i++){
inputs[i] = beVector[i];
} // i
} else {
for(int i = 0; i <= (inputNeurons - 1); i++){
inputs[i] = sampleInput[sample - 1][i];
} // i
} //After the samples are entered into the input units, the sample are
//then offset by one and entered into target-output units for
//later comparison.
if(sample == maxSamples - 1){
for(int i = 0; i <= (inputNeurons - 1); i++){
target[i] = beVector[i];
} // i
} else {
for(int i = 0; i <= (inputNeurons - 1); i++){
target[i] = sampleInput[sample][i];
} // i
} feedForward(); err = 0.0;
for(int i = 0; i <= (outputNeurons - 1); i++){
err += sqrt(target[i] - actual[i]);
} // i
err = 0.5 * err; if(iterations > trainingReps){
stopLoop = true;
}
iterations += 1; backPropagate(); sample += 1;
if(sample == maxSamples){
sample = 0;
}
} while(stopLoop == false); cout << "Iterations = " << iterations << endl;
} void testNetwork(){
int index;
int randomNumber, predicted;
bool stopTest, stopSample, successful; //Test the network with random input patterns.
stopTest = false;
for(int test = 0; test <= maxTests; test++){ //Enter Beginning string.
inputs[0] = 1.0;
inputs[1] = 0.0;
inputs[2] = 0.0;
inputs[3] = 0.0;
inputs[4] = 0.0;
inputs[5] = 0.0;
cout << "(0) "; feedForward(); stopSample = false;
successful = false;
index = 0; //note:If failed then index start from 0 again
     /*However, the nature of this kind of recurrent network is easier to understand (at least to me),
imply by referring to the unit's position in serial order (i.e.; Y0, Y1, Y2, Y3, ...).  
So for the purpose of this illustration, I'll just use strings of numbers like: 0, 3, 5, 2, 0,
where 0 refers to Y0, 3 refers to Y3, 5 refers to Y5, etc.  Each string begins and ends with a terminal symbol; I'll use 0 for this example.*/ 

randomNumber = 0;
predicted = 0; do { for(int i = 0; i <= 5; i++){
cout << actual[i] << " ";
if(actual[i] >= 0.3){
//The output unit with the highest value (usually over 3.0)
//is the network's predicted unit that it expects to appear
//in the next input vector.
//For example, if the 3rd output unit has the highest value,
//the network expects the 3rd unit in the next input to
//be 1.0
//If the actual value isn't what it expected, the random
//sequence has failed, and a new test sequence begins.
predicted = i;
}
} // i
cout << "\n"; randomNumber = getRandomNumber(); //Enter a random letter. index += 1; //Increment to the next position.
if(index == 5){
stopSample = true;
} else {
cout << "(" << randomNumber << ") ";
} for( i = 0; i <= 5; i++){
if(i == randomNumber){//note:i==randomNumber&&i == predicted then succeed
inputs[i] = 1.0;
if(i == predicted){
successful = true;
//for(int k=0;k<5;k++)//have a look;
// cout<<"\nTang :the sequence is:"<<inputs[k]<<'\t';
//cout<<endl;
} else {
//Failure. Stop this sample and try a new sample.
stopSample = true;
}
} else {
inputs[i] = 0.0;
}
} // i feedForward(); } while(stopSample == false); //Enter another letter into this sample sequence. if((index > 4) && (successful == true)){ //note: stop the iteration until success a sequence matching success at least 5 times.
//If the random sequence happens to be in the correct order,
//the network reports success.
cout << "Success." << endl;
cout << "Completed " << test << " tests." << endl;
stopTest = true;
break;
} else {
cout << "Failed." << endl;
if(test > maxTests){
stopTest = true;
cout << "Completed " << test << " tests with no success." << endl;
break;
}
}
} // Test
} void feedForward(){
double sum; //Calculate input and context connections to hidden layer.
for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){
sum = 0.0;
//from input to hidden...
for(int inp = 0; inp <= (inputNeurons - 1); inp++){
sum += inputs[inp] * wih[inp][hid];
} // inp
//from context to hidden...
for(int con = 0; con <= (contextNeurons - 1); con++){
sum += context[con] * wch[con][hid];
} // con
//Add in bias.
sum += wih[inputNeurons][hid];
sum += wch[contextNeurons][hid];
hidden[hid] = sigmoid(sum);
} // hid //Calculate the hidden to output layer.
for(int out = 0; out <= (outputNeurons - 1); out++){
sum = 0.0;
for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){
sum += hidden[hid] * who[hid][out];
} // hid //Add in bias.
sum += who[hiddenNeurons][out];
actual[out] = sigmoid(sum);
} // out //Copy outputs of the hidden to context layer.
for(int con = 0; con <= (contextNeurons - 1); con++){
context[con] = hidden[con];
} // con } void backPropagate(){ //Calculate the output layer error (step 3 for output cell).
for(int out = 0; out <= (outputNeurons - 1); out++){
erro[out] = (target[out] - actual[out]) * sigmoidDerivative(actual[out]);
} // out //Calculate the hidden layer error (step 3 for hidden cell).
for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){
errh[hid] = 0.0;
for(int out = 0; out <= (outputNeurons - 1); out++){
errh[hid] += erro[out] * who[hid][out];
} // out
errh[hid] *= sigmoidDerivative(hidden[hid]);
} // hid //Update the weights for the output layer (step 4).
for( out = 0; out <= (outputNeurons - 1); out++){
for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){
who[hid][out] += (learnRate * erro[out] * hidden[hid]);
} // hid
//Update the bias.
who[hiddenNeurons][out] += (learnRate * erro[out]);
} // out //Update the weights for the hidden layer (step 4).
for( hid = 0; hid <= (hiddenNeurons - 1); hid++){
for(int inp = 0; inp <= (inputNeurons - 1); inp++){
wih[inp][hid] += (learnRate * errh[hid] * inputs[inp]);
} // inp
//Update the bias.
wih[inputNeurons][hid] += (learnRate * errh[hid]);
} // hid } void assignRandomWeights(){ for(int inp = 0; inp <= inputNeurons; inp++){
for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){
//Assign a random weight value between -0.5 and 0.5
wih[inp][hid] = -0.5 + double(rand()/(RAND_MAX + 1.0));
} // hid
} // inp for(int con = 0; con <= contextNeurons; con++){
for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){
//Assign a random weight value between -0.5 and 0.5
wch[con][hid] = -0.5 + double(rand()/(RAND_MAX + 1.0));
} // hid
} // con for(int hid = 0; hid <= hiddenNeurons; hid++){
for(int out = 0; out <= (outputNeurons - 1); out++){
//Assign a random weight value between -0.5 and 0.5
who[hid][out] = -0.5 + double(rand()/(RAND_MAX + 1.0));
} // out
} // hid for(int out = 0; out <= outputNeurons; out++){
for(int con = 0; con <= (contextNeurons - 1); con++){
//These are all fixed weights set to 0.5
whc[out][con] = 0.5;
} // con
} // out } int getRandomNumber(){
//Generate random value between 0 and 6.
return int(6*rand()/(RAND_MAX + 1.0));
} double sigmoid(double val){
return (1.0 / (1.0 + exp(-val)));
} double sigmoidDerivative(double val){
return (val * (1.0 - val));
}

Elman network with additional notes的更多相关文章

  1. 论文笔记之:Progressive Neural Network Google DeepMind

    Progressive Neural Network  Google DeepMind 摘要:学习去解决任务的复杂序列 --- 结合 transfer (迁移),并且避免 catastrophic f ...

  2. 详解循环神经网络(Recurrent Neural Network)

    本文结构: 模型 训练算法 基于 RNN 的语言模型例子 代码实现 1. 模型 和全连接网络的区别 更细致到向量级的连接图 为什么循环神经网络可以往前看任意多个输入值 循环神经网络种类繁多,今天只看最 ...

  3. Heterogeneous Self-Organizing Network for Access and Backhaul

    This application discloses methods for creating self-organizing networks implemented on heterogeneou ...

  4. Real-time storage area network

    A cluster of computing systems is provided with guaranteed real-time access to data storage in a sto ...

  5. Gitlab的搭建

    从网上看了一大堆的资料,最终选定按照github上的文档来搭建,虽然本人英文不好,就这样看着 这个博客弯曲完全是拷贝过来的,只为了做个笔记 原文地址:https://github.com/gitlab ...

  6. CentOS6.5Minimal安装Gitlab7.5

    文章出处:http://www.restran.net/2015/04/09/gilab-centos-installation-note/ 在 CentOS 6.5 Minimal 系统环境下,用源 ...

  7. Windows Server 2008 HPC 版本介绍以及的Pack

    最近接触了下 这个比较少见的 Windows Server版本 Windows Server 2008 HPC 微软官方的介绍 http://www.microsoft.com/china/hpc/ ...

  8. 【Caffe 测试】Training LeNet on MNIST with Caffe

    Training LeNet on MNIST with Caffe We will assume that you have Caffe successfully compiled. If not, ...

  9. rsync Backups for Windows

    Transfer your Windows Backups to an rsync server over SSH rsync.net provides cloud storage for offsi ...

随机推荐

  1. VSCode官方的配置同步方案

    前言 这几天在迁移电脑工作环境,对于VSCode,我实在不想从头做下载插件.配置代码规则这样的事情,于是求助百度,搜索结果靠前的解决方案基本都是使用Setings Sync插件,于是我就从了. 经过好 ...

  2. nacos配置中心文件(bootstrap.properties)不生效问题解决

    springcloud整合nacos作为配置中心时,配置文件不生效的问题 在这个问题处卡了一天多,在网上各种搜索.大多数解决方案都是在bootstrap.properties文件中配置nacos地址. ...

  3. .Net Core AOP之IResultFilter

    一.简介 在.net core 中Filter分为以下六大类: 1.AuthorizeAttribute(权限验证) 2.IResourceFilter(资源缓存) 3.IActionFilter(执 ...

  4. [error]subprocess.CalledProcessError: Command '['which', 'g++']' returned non-zero exit status 1.

    ubuntu 20.04 上安装 mmcv-full 时,无论是执行: pip install mmcv-full 还是将 mmcv-full 项目克隆下来编译,均会出现问题. 百度无果,去必应上逛了 ...

  5. [Python]数据类型、常量、变量和运算符(未完待续)

    标识符 一个ASCII标识符需要同时满足以下三个条件: 1.第一个字符必须是字母表中的字母或者下划线_ 2.标识符的其他部分由字母.数字.下划线组成 3.标识符对大小写是敏感的,即A与a是不同的 一般 ...

  6. C# Task和异步方法

    本文主要参考: https://www.cnblogs.com/qtiger/p/13497807.html ThreadPool中有若干数量的线程.当有任务需要处理时,会从线程池中获取一个空闲的线程 ...

  7. tunneling socket could not be established, cause=connect ECONNREFUSED 127.0.0.1:56281 npm ERR! network This is most likely not a problem with npm itself npm ERR! network and is related to network

    tunneling socket could not be established, cause=connect ECONNREFUSED 127.0.0.1:56281npm ERR! networ ...

  8. JSP文件的上传

    JSP 文件上传 JSP 可以与 HTML form 标签一起使用,来允许用户上传文件到服务器.上传的文件可以是文本文件或图像文件或任何文档. 本章节我们使用 Servlet 来处理文件上传,使用到的 ...

  9. Qt:QJsonArray

    0.说明 QJsonArray中存储了一系列的QJsonValue.可以向其中插入.删除QJsonValue. 一个QJsonArray可以与QVariantList互相转换.可以通过size()访问 ...

  10. Qt:QTimer

    1.说明 QTimer类代表计时器,为了正确使用计时器,可以构造一个QTimer,将它的timeout()信号connect到合适的槽,之后调用start().然后,这个QTimer就会每隔inter ...