// Author: John McCullock
// Date: 10-15-05
// Description: Elman Network Example 1.
//http://www.mnemstudio.org/neural-networks-elman.htm
#include <iostream>
#include <iomanip>
#include <cmath>
#include <string>
#include <ctime>
#include <cstdlib> using namespace std; const int maxTests = 10000;
const int maxSamples = 4; const int inputNeurons = 6;
const int hiddenNeurons = 3;
const int outputNeurons = 6;
const int contextNeurons = 3; const double learnRate = 0.2; //Rho.
const int trainingReps = 2000; //beVector is the symbol used to start or end a sequence.
double beVector[inputNeurons] = {1.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // 0 1 2 3 4 5
double sampleInput[3][inputNeurons] = {{0.0, 0.0, 0.0, 1.0, 0.0, 0.0},
{0.0, 0.0, 0.0, 0.0, 0.0, 1.0},
{0.0, 0.0, 1.0, 0.0, 0.0, 0.0}}; //Input to Hidden weights (with biases).
double wih[inputNeurons + 1][hiddenNeurons]; //Context to Hidden weights (with biases).
double wch[contextNeurons + 1][hiddenNeurons]; //Hidden to Output weights (with biases).
double who[hiddenNeurons + 1][outputNeurons]; //Hidden to Context weights (no biases).
double whc[outputNeurons + 1][contextNeurons]; //Activations.
double inputs[inputNeurons];
double hidden[hiddenNeurons];
double target[outputNeurons];
double actual[outputNeurons];
double context[contextNeurons]; //Unit errors.
double erro[outputNeurons];
double errh[hiddenNeurons]; void ElmanNetwork();
void testNetwork();
void feedForward();
void backPropagate();
void assignRandomWeights();
int getRandomNumber();
double sigmoid(double val);
double sigmoidDerivative(double val); int main(){ cout << fixed << setprecision(3) << endl; //Format all the output.
srand((unsigned)time(0)); //Seed random number generator with system time.
ElmanNetwork();
testNetwork(); return 0;
} void ElmanNetwork(){
double err;
int sample = 0;
int iterations = 0;
bool stopLoop = false; assignRandomWeights(); //Train the network.
do { if(sample == 0){
for(int i = 0; i <= (inputNeurons - 1); i++){
inputs[i] = beVector[i];
} // i
} else {
for(int i = 0; i <= (inputNeurons - 1); i++){
inputs[i] = sampleInput[sample - 1][i];
} // i
} //After the samples are entered into the input units, the sample are
//then offset by one and entered into target-output units for
//later comparison.
if(sample == maxSamples - 1){
for(int i = 0; i <= (inputNeurons - 1); i++){
target[i] = beVector[i];
} // i
} else {
for(int i = 0; i <= (inputNeurons - 1); i++){
target[i] = sampleInput[sample][i];
} // i
} feedForward(); err = 0.0;
for(int i = 0; i <= (outputNeurons - 1); i++){
err += sqrt(target[i] - actual[i]);
} // i
err = 0.5 * err; if(iterations > trainingReps){
stopLoop = true;
}
iterations += 1; backPropagate(); sample += 1;
if(sample == maxSamples){
sample = 0;
}
} while(stopLoop == false); cout << "Iterations = " << iterations << endl;
} void testNetwork(){
int index;
int randomNumber, predicted;
bool stopTest, stopSample, successful; //Test the network with random input patterns.
stopTest = false;
for(int test = 0; test <= maxTests; test++){ //Enter Beginning string.
inputs[0] = 1.0;
inputs[1] = 0.0;
inputs[2] = 0.0;
inputs[3] = 0.0;
inputs[4] = 0.0;
inputs[5] = 0.0;
cout << "(0) "; feedForward(); stopSample = false;
successful = false;
index = 0; //note:If failed then index start from 0 again
     /*However, the nature of this kind of recurrent network is easier to understand (at least to me),
imply by referring to the unit's position in serial order (i.e.; Y0, Y1, Y2, Y3, ...).  
So for the purpose of this illustration, I'll just use strings of numbers like: 0, 3, 5, 2, 0,
where 0 refers to Y0, 3 refers to Y3, 5 refers to Y5, etc.  Each string begins and ends with a terminal symbol; I'll use 0 for this example.*/ 

randomNumber = 0;
predicted = 0; do { for(int i = 0; i <= 5; i++){
cout << actual[i] << " ";
if(actual[i] >= 0.3){
//The output unit with the highest value (usually over 3.0)
//is the network's predicted unit that it expects to appear
//in the next input vector.
//For example, if the 3rd output unit has the highest value,
//the network expects the 3rd unit in the next input to
//be 1.0
//If the actual value isn't what it expected, the random
//sequence has failed, and a new test sequence begins.
predicted = i;
}
} // i
cout << "\n"; randomNumber = getRandomNumber(); //Enter a random letter. index += 1; //Increment to the next position.
if(index == 5){
stopSample = true;
} else {
cout << "(" << randomNumber << ") ";
} for( i = 0; i <= 5; i++){
if(i == randomNumber){//note:i==randomNumber&&i == predicted then succeed
inputs[i] = 1.0;
if(i == predicted){
successful = true;
//for(int k=0;k<5;k++)//have a look;
// cout<<"\nTang :the sequence is:"<<inputs[k]<<'\t';
//cout<<endl;
} else {
//Failure. Stop this sample and try a new sample.
stopSample = true;
}
} else {
inputs[i] = 0.0;
}
} // i feedForward(); } while(stopSample == false); //Enter another letter into this sample sequence. if((index > 4) && (successful == true)){ //note: stop the iteration until success a sequence matching success at least 5 times.
//If the random sequence happens to be in the correct order,
//the network reports success.
cout << "Success." << endl;
cout << "Completed " << test << " tests." << endl;
stopTest = true;
break;
} else {
cout << "Failed." << endl;
if(test > maxTests){
stopTest = true;
cout << "Completed " << test << " tests with no success." << endl;
break;
}
}
} // Test
} void feedForward(){
double sum; //Calculate input and context connections to hidden layer.
for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){
sum = 0.0;
//from input to hidden...
for(int inp = 0; inp <= (inputNeurons - 1); inp++){
sum += inputs[inp] * wih[inp][hid];
} // inp
//from context to hidden...
for(int con = 0; con <= (contextNeurons - 1); con++){
sum += context[con] * wch[con][hid];
} // con
//Add in bias.
sum += wih[inputNeurons][hid];
sum += wch[contextNeurons][hid];
hidden[hid] = sigmoid(sum);
} // hid //Calculate the hidden to output layer.
for(int out = 0; out <= (outputNeurons - 1); out++){
sum = 0.0;
for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){
sum += hidden[hid] * who[hid][out];
} // hid //Add in bias.
sum += who[hiddenNeurons][out];
actual[out] = sigmoid(sum);
} // out //Copy outputs of the hidden to context layer.
for(int con = 0; con <= (contextNeurons - 1); con++){
context[con] = hidden[con];
} // con } void backPropagate(){ //Calculate the output layer error (step 3 for output cell).
for(int out = 0; out <= (outputNeurons - 1); out++){
erro[out] = (target[out] - actual[out]) * sigmoidDerivative(actual[out]);
} // out //Calculate the hidden layer error (step 3 for hidden cell).
for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){
errh[hid] = 0.0;
for(int out = 0; out <= (outputNeurons - 1); out++){
errh[hid] += erro[out] * who[hid][out];
} // out
errh[hid] *= sigmoidDerivative(hidden[hid]);
} // hid //Update the weights for the output layer (step 4).
for( out = 0; out <= (outputNeurons - 1); out++){
for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){
who[hid][out] += (learnRate * erro[out] * hidden[hid]);
} // hid
//Update the bias.
who[hiddenNeurons][out] += (learnRate * erro[out]);
} // out //Update the weights for the hidden layer (step 4).
for( hid = 0; hid <= (hiddenNeurons - 1); hid++){
for(int inp = 0; inp <= (inputNeurons - 1); inp++){
wih[inp][hid] += (learnRate * errh[hid] * inputs[inp]);
} // inp
//Update the bias.
wih[inputNeurons][hid] += (learnRate * errh[hid]);
} // hid } void assignRandomWeights(){ for(int inp = 0; inp <= inputNeurons; inp++){
for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){
//Assign a random weight value between -0.5 and 0.5
wih[inp][hid] = -0.5 + double(rand()/(RAND_MAX + 1.0));
} // hid
} // inp for(int con = 0; con <= contextNeurons; con++){
for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){
//Assign a random weight value between -0.5 and 0.5
wch[con][hid] = -0.5 + double(rand()/(RAND_MAX + 1.0));
} // hid
} // con for(int hid = 0; hid <= hiddenNeurons; hid++){
for(int out = 0; out <= (outputNeurons - 1); out++){
//Assign a random weight value between -0.5 and 0.5
who[hid][out] = -0.5 + double(rand()/(RAND_MAX + 1.0));
} // out
} // hid for(int out = 0; out <= outputNeurons; out++){
for(int con = 0; con <= (contextNeurons - 1); con++){
//These are all fixed weights set to 0.5
whc[out][con] = 0.5;
} // con
} // out } int getRandomNumber(){
//Generate random value between 0 and 6.
return int(6*rand()/(RAND_MAX + 1.0));
} double sigmoid(double val){
return (1.0 / (1.0 + exp(-val)));
} double sigmoidDerivative(double val){
return (val * (1.0 - val));
}

Elman network with additional notes的更多相关文章

  1. 论文笔记之:Progressive Neural Network Google DeepMind

    Progressive Neural Network  Google DeepMind 摘要:学习去解决任务的复杂序列 --- 结合 transfer (迁移),并且避免 catastrophic f ...

  2. 详解循环神经网络(Recurrent Neural Network)

    本文结构: 模型 训练算法 基于 RNN 的语言模型例子 代码实现 1. 模型 和全连接网络的区别 更细致到向量级的连接图 为什么循环神经网络可以往前看任意多个输入值 循环神经网络种类繁多,今天只看最 ...

  3. Heterogeneous Self-Organizing Network for Access and Backhaul

    This application discloses methods for creating self-organizing networks implemented on heterogeneou ...

  4. Real-time storage area network

    A cluster of computing systems is provided with guaranteed real-time access to data storage in a sto ...

  5. Gitlab的搭建

    从网上看了一大堆的资料,最终选定按照github上的文档来搭建,虽然本人英文不好,就这样看着 这个博客弯曲完全是拷贝过来的,只为了做个笔记 原文地址:https://github.com/gitlab ...

  6. CentOS6.5Minimal安装Gitlab7.5

    文章出处:http://www.restran.net/2015/04/09/gilab-centos-installation-note/ 在 CentOS 6.5 Minimal 系统环境下,用源 ...

  7. Windows Server 2008 HPC 版本介绍以及的Pack

    最近接触了下 这个比较少见的 Windows Server版本 Windows Server 2008 HPC 微软官方的介绍 http://www.microsoft.com/china/hpc/ ...

  8. 【Caffe 测试】Training LeNet on MNIST with Caffe

    Training LeNet on MNIST with Caffe We will assume that you have Caffe successfully compiled. If not, ...

  9. rsync Backups for Windows

    Transfer your Windows Backups to an rsync server over SSH rsync.net provides cloud storage for offsi ...

随机推荐

  1. ajax的发展

    ajax(Asynchronous Javascript and XML)异步javascrip和XMl. ajax只是一种web交互方法.在客户端(浏览器)和服务区段之间传输少量的信息.从而为用户提 ...

  2. react 也就这么回事 02 —— JSX 插值表达式、条件渲染以及列表渲染

    我们已经学会了 React 创建元素和渲染元素 ReactDOM.render(<div>Hello React!</div>, document.getElementById ...

  3. windows mysql数据存储路径更改

    背景:之前服务器磁盘很小,随着数据量的不断增加,磁盘不够,所以新申请了更大的磁盘,然后需要将旧路径下的数据迁移到新磁盘上. 1.任务管理器-打开服务,找到mysql的启动项,停止服务,属性查看可执行文 ...

  4. 【axios三部曲】一、使用axios

    axios作为一个基于promise的网络请求库,它同时支持浏览器和node环境,是我们开发中常用的一个库 ​ 它的一些特性: 从浏览器发出XMLHttpRequests 从node.js发出http ...

  5. 什么,有狗快跑!慢着,这次手把手教你怎么过安全狗!(sql注入篇)

    前言 在记忆里上次绕安全狗还是在上次,开开心心把自己之前绕过狗的payload拿出来,发现全部被拦截了,事情一下子就严肃起来了,这就开整. 环境 本次环境如下sqli-lab的sql注入靶场 网站安全 ...

  6. 使用jvisualvm监控k8s内java项目

    资源文件yaml配置 -javaagent:/usr/skywalking/agent/skywalking-agent.jar -Dcom.sun.management.jmxremote -Dja ...

  7. 【C# .Net GC】条件自动垃圾回收 HandleCollector类

    条件自动回收 达到指定条件后自动执行GC回收垃圾. GC中的方法AddMemoryPressure和RemoveMemoryPressure 本机资源有时会消耗大量内存,但用于包装它的托管对象只占用很 ...

  8. 60天shell脚本计划-6/12-渐入佳境

    --作者:飞翔的小胖猪 --创建时间:2021年2月21日 --修改时间:2021年2月25日 说明 每日上传更新一个shell脚本,周期为60天.如有需求的读者可根据自己实际情况选用合适的脚本,也可 ...

  9. html实现随机验证码

    代码: <!DOCTYPE html> <html> <!-- head --> <head> <title>图片登录验证</titl ...

  10. Spark分区数、task数目、core数目、worker节点数目、executor数目梳理

    Spark分区数.task数目.core数目.worker节点数目.executor数目梳理 spark隐式创建由操作组成的逻辑上的有向无环图.驱动器执行时,它会把这个逻辑图转换为物理执行计划,然后将 ...