1.J题:给你T组数据,每一组数据给你一个区间,让你求这个区间的范围,区间的起始时间和终止时间可能被包含或重复

    思路:思路的话,就是直接把给定的两个区间的之间的数包括端点存到vector去重,然后直接输出个数即可,或者直接存到set里直接系统去重也可

#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std; vector<int> ans; int main()
{
std::ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int T;
cin>>T;
while(T--)
{
int a,b;
cin>>a>>b;
for(int i=a;i<=b;i++)
{
ans.push_back(i);
}
}
sort(ans.begin(),ans.end());
ans.erase(unique(ans.begin(),ans.end()),ans.end());
cout<<ans.size()<<endl;
return 0;
}

2.L题:给你T个数让你求每个数的非质因数的因数个数

思路:一开始我们想到的是直接预处理,直接在前面预处理出来答案,然后按O(1)的时间复杂度查询就可以了,但是其实这样的话再做预处理的时候就会超时,然后我们知道了怎么算因数的个数,根据惟一分解定理我们可以知道,每一个数都可以被分成几个质数的几次方相乘的乘积,然后把每一个数的指数加一,然后乘起来就是因数的个数,此时我们把质因数的个数去掉之后,就可以得到非质因数的个数。然后我们可以直接去求质因数,这样的话及可以求出每一个质因数的个数(及指数)又可以求出质因数的个数,这样的话我们就可以求出最终的答案,但是直接这样写的话还是会超时,因为它有3e6次的询问,但是我们最大的数才是2e6所以有的数肯定不止被算了一遍,这样的话我们可以记录一下,如果这个数被算过的话我们就直接输出,没有被算过的时候再进行计算

#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int N = 3e6 + 10;
int res[N]; void divide(int x)
{
int k=x;
int ans=1;
int ans2=0;
for (int i = 2; i <= x / i; i ++ )
if (x % i == 0)
{
int s = 0;
while (x % i == 0)
{
x /= i, s ++ ;
}
ans*=s+1;
if(x!=1)
ans2++;
}
if (x > 1) ans*=2;
printf("%d\n",ans-ans2-1);
res[k]=ans-ans2-1;
} int main()
{
res[1]=1;
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
if(res[n]!=0)
printf("%d\n",res[n]);
else
divide(n);
}
return 0;
}

3.B题:意思是一开始给我们一张图,然后其中有一台主机会被病毒给侵染,但是我们想让它一次就把所有的主机感染,并且我们会加上一些边保证能一次感染,问我们加边的条数最少是多少,病毒只可以隔一个侵染。

思路:翟老板全程提供思路,此题其实我们如果想让它在只侵染一台主机的情况下,想要把所有的机器都通过跳跃的毒素侵染的话,我们首先至少得把所有的点全部连在一起,这样的话我们可以用并查集,通过并查集我们可以求出一共有几个图,我们首先要把不连在一起的图连在一起,这样的话我们就会有ans=父节点等于其本身的点的个数减一。然后我们再考虑,光连同还不行,必须要存在一个奇数环,这样的话才能保证在只侵染一个主机的前提下,主机通过病毒去侵染别的主机进而侵染全部,然后奇数环的话我们可以联想到二分图,二分图就是没有奇数环的无向图,这样的话我们只需要通过染色法判断它是否是个二分图即可,如果是二分图的话,我们就要加上一条边(及凑出奇数环),如果不是二分图的话,说明我存在奇数环,最后直接输出ans即可。

#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int N = 1e6 + 10;
int p[N];
int e[N],ne[N],h[N],color[N],idx; void add(int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
} int find(int x)
{
if(p[x]!=x) p[x]=find(p[x]);
return p[x];
} bool dfs(int u,int c)
{
color[u]=c; for(int i=h[u];~i;i=ne[i])
{
int j=e[i];
if(!color[j])
{
if(!dfs(j,3-c))
return false;
}
else if(color[j]==c)
{
return false;
}
}
return true;
} int main()
{
int ans=0;
memset(h,-1,sizeof h);
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) p[i]=i;
while(m--)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
int pa=find(a);
int pb=find(b);
p[pa]=pb;
}
for(int i=1;i<=n;i++)
{
if(p[i]==i)
ans++;
}
ans=ans-1;
bool flag=true;
for(int i=1;i<=n;i++)
{
if(!color[i])
{
if(!dfs(i,1))
{
flag=false;
break;
}
}
}
if(flag==true)
{
ans++;
}
printf("%d\n",ans);
return 0;
}

SDUT 2022 Autumn Team Contest 7th的更多相关文章

  1. C++ 与 Visual Studio 2022 和 WSL(五)——WSL2

    Build and Debug C++ with WSL 2 Distributions and Visual Studio 2022 References Build and Debug C++ w ...

  2. atcoder beginner contest 251(D-E)

    Tasks - Panasonic Programming Contest 2022(AtCoder Beginner Contest 251)\ D - At Most 3 (Contestant ...

  3. C - NP-Hard Problem(二分图判定-染色法)

    C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:262144 ...

  4. codeforces 360 C

    C - NP-Hard Problem Description Recently, Pari and Arya did some research about NP-Hard problems and ...

  5. C - NP-Hard Problem

    C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:262144 ...

  6. CF687A. NP-Hard Problem[二分图判定]

    A. NP-Hard Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  7. codeforces 360 C - NP-Hard Problem

    原题: Description Recently, Pari and Arya did some research about NP-Hard problems and they found the  ...

  8. CodeForces 534D Program B

    Description On February, 30th n students came in the Center for Training Olympiad Programmers (CTOP) ...

  9. 【CF39E】【博弈论】What Has Dirichlet Got to Do with That?

    Description You all know the Dirichlet principle, the point of which is that if n boxes have no less ...

随机推荐

  1. UiPath官网认证中文教程

    RPA之家公众号:RPA之家 RPA之家官网:http://rpazj.com 斗鱼直播:http://www.douyu.com/rpazj UiPath中文社区QQ群:465630324 RPA& ...

  2. KVM虚拟机安装及桥接网络配置

    1.查看CPU是否支持intel或AMD的虚拟技术 cat /proc/cpuinfo | grep -E "vmx|svm" --color --vmx intel的CPU sv ...

  3. js与java encodeURI 进行编码与解码

    JS escape()使用转义序列替换某些字符来对字符串进行编码  JavaScript 中国 编码后 JavaScript %u4E2D%u56FD unescape()对使用   encodeUR ...

  4. 强化学习-学习笔记4 | Actor-Critic

    Actor-Critic 是价值学习和策略学习的结合.Actor 是策略网络,用来控制agent运动,可以看做是运动员.Critic 是价值网络,用来给动作打分,像是裁判. 4. Actor-Crit ...

  5. 微服务远程Debug,Nocalhost + Rainbond微服务开发第二弹

    之前的文章中我们介绍了如何通过 Nocalhost 快速开发 Rainbond 上的微服务,介绍了基本的开发流程. 本文将续接上文继续介绍,使用 Nocalhost 开发配置文件 实现以下内容: 一键 ...

  6. Windows JDK 的下载与安装

    Java Development Kit 简称 JDK,任何需要开发 Java 程序的环境都需要进行安装 JDK. JDK 下载地址:https://www.oracle.com/java/techn ...

  7. BufferedWniter_字符缓冲输出流和BufferedReader_字符缓冲输入流

    java.io.BufferedWriter extends Writer BufferedWriter:字符缓冲输出流 继承自父类的共性成员方法: -void write(int c)写入单个字符 ...

  8. zookeeper Caused by: java.lang.IllegalArgumentException: myid file is missing

    zookeeper 安装集群,配置文件和data和其它都没有问题. 则需要在data里面下添加一个myid 文件 myid里面的数据个service一致 比如.cnf里面配置是 dataDir=/us ...

  9. Solution -「线段树」题目集合

    T1 无聊的数列 来自:Link flag 帖先从水题入手. 首先分析题目,它是以等差数列为原型进行的修改.等差数列一大性质就是其差分数列的值除第一项以外均相等. 于是不难想到使用差分数列进行维护. ...

  10. day02_基本语法

    基本语法 学习目标: 1. 数据类型 2. 变量 3. 编码介绍 4. 标识符和关键字 5. 字符串类型 6. 数据类型转化 7. 进制转换 8. 运算符 一.数据类型 什么是数据类型? 在开发软件的 ...