BZOJ.3170.[TJOI2013]松鼠聚会(切比雪夫距离转曼哈顿距离)
将原坐标系每个点的坐标\((x,y)\)变为\((x+y,x-y)\),则原坐标系中的曼哈顿距离等于新坐标系中的切比雪夫距离。
反过来,将原坐标系每个点的坐标\((x,y)\)变为\((\frac{x+y}{2},\frac{x-y}{2})\),则原坐标系中的切比雪夫距离等于新坐标系中的曼哈顿距离。
随便写两个点就可以验证这是对的。
将题目中每个点的坐标\((x,y)\)改为\((\frac{x+y}{2},\frac{x-y}{2})\),然后记\(dis(a,b)=\Delta X+\Delta Y\)表示两个点\(a,b\)间的曼哈顿距离。
枚举每一个点\(x\),则到\(x\)的距离之和为\(Sum=\sum_{i=1}^ndis(i,x)\)。
把\(dis(i,x)\)拆开,即$$\begin{aligned}Sum&=\sum_{i=1}^n\Delta X(i,x)+\Delta Y(i,x)\&=\Delta X(1,x)+\Delta X(2,x)+...+\Delta Y(1,x)+\Delta Y(2,x)...\end{aligned}$$
把每个点按\(x\)或\(y\)排序,枚举点时就可以\(O(1)\)计算\(\Delta X\)或\(\Delta Y\)的变化量了。
当然没必要先把坐标\(x,y\)除以\(2\)。最后把答案除以\(2\)即可。
我否认在刷水题的事实。
//3072kb 264ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=1e5+5;
LL Ans[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Point
{
int x,y,id;
Point(int tid=0,int ty=0,int tx=0) {id=tid, x=tx+ty, y=tx-ty;}
}p[N];
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
bool cmpx(Point a,Point b)
{
return a.x<b.x;
}
bool cmpy(Point a,Point b)
{
return a.y<b.y;
}
int main()
{
int n=read();
for(int i=1; i<=n; ++i) p[i]=Point(i,read(),read());
std::sort(p+1,p+1+n,cmpx);
LL sum=-1ll*(n-1)*p[1].x;
for(int i=2; i<=n; ++i) sum+=p[i].x;
for(int i=1; i<=n; ++i)
Ans[p[i].id]+=sum, sum+=(2ll*i-n)*(p[i+1].x-p[i].x);//i*dx-(n-i)*dx
std::sort(p+1,p+1+n,cmpy);
sum=-1ll*(n-1)*p[1].y;
for(int i=2; i<=n; ++i) sum+=p[i].y;
for(int i=1; i<=n; ++i)
Ans[p[i].id]+=sum, sum+=(2ll*i-n)*(p[i+1].y-p[i].y);
LL ans=1e18;
for(int i=1; i<=n; ++i) ans=std::min(ans,Ans[i]);
printf("%lld\n",ans>>1);
return 0;
}
BZOJ.3170.[TJOI2013]松鼠聚会(切比雪夫距离转曼哈顿距离)的更多相关文章
- BZOJ 3170 [Tjoi2013]松鼠聚会
题解:切比雪夫距离转化为曼哈顿距离 枚举源点,横纵坐标互不影响,分开考虑,前缀和优化 横纵分开考虑是一种解题思路 #include<iostream> #include<cstdio ...
- BZOJ - 3170: 松鼠聚会 (切比雪夫转曼哈顿距离)
pro: 有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1.现在N个松鼠要走到一个松鼠家去,求走过的最短距离.0&l ...
- BZOJ3170: [Tjoi2013]松鼠聚会(切比雪夫距离转曼哈顿距离)
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1524 Solved: 803[Submit][Status][Discuss] Descripti ...
- BZOJ3170 [Tjoi2013]松鼠聚会 切比雪夫距离 - 曼哈顿距离 - 前缀和
BZOJ3170 题意: 有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1.现在N个松鼠要走到一个松鼠家去,求走过的最 ...
- Bzoj3170: [Tjoi2013]松鼠聚会 (切比雪夫距离)
题目链接 显然,题目要求我们求切比雪夫距离,不会的可以去看一下attack的博客. 考虑枚举所有的点 转换为曼哈顿距离后. 那么对于这个点的路程和是. \[\sum_{i=1}^n | x_i - x ...
- 3170: [Tjoi2013]松鼠聚会
Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1804 Solved: 968[Submit][Status][Discuss] Descript ...
- 【bzoj3170】[Tjoi2013]松鼠聚会
3170: [Tjoi2013]松鼠聚会 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1670 Solved: 885[Submit][Statu ...
- BZOJ 3170 松鼠聚会(切比雪夫距离转曼哈顿距离)
题意 有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1.现在N个松鼠要走到一个松鼠家去,求走过的最短距离. 思路 题目 ...
- BZOJ_3170_[Tjoi2013]松鼠聚会_切比雪夫距离+前缀和
BZOJ_3170_[Tjoi2013]松鼠聚会_切比雪夫距离+前缀和 题意:有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点, ...
随机推荐
- 三维拓扑排序好题hdu3231
/* 三维拓扑排序 将每个长方体分解成六个面,xyz三维进行操作 每一维上的的所有长方体的面都应该服从拓扑关系,即能够完成拓扑排序=如果两个长方体的关系时相交,那么其对应的三对面只要交叉即可 如 a1 ...
- sass基础—属性嵌套以及跳出嵌套 @at-root
/*注意:定义的变量若是没有使用则不会编译到css文件中.*//*1)sass的局部变量*/$font:14px;//定义$font:12px !default; //没有default时是重新赋值, ...
- axure--中继器
*****中继器-repeater*****1.结构:类似于MVC(增删查改)1)中继器数据集:可包括图片.文字.网址(页面)(右键添加,列名尽量使用英 文或拼音) 2)中继器格式:横向.纵向(是否换 ...
- JAVA代码中可使用中文类名,变量名,对象名,方法名.
java程序 兔子 public class 兔子{ //构造方法 public 兔子(){} public void 吃草(){ System.out.println("兔子在吃草&quo ...
- 微信小程序--代码构成---JSON 配置
在上一章中,我们通过开发者工具快速创建了一个 QuickStart 项目.你可以留意到这个项目里边生成了不同类型的文件: .json 后缀的 JSON 配置文件 .wxml 后缀的 WXML 模板文件 ...
- SQL Server等待
等待大概分为3类:资源等待.队列等待.外部等待 过滤掉系统相关的等待类型的语句.(查看常用的等待信息) SELECT wait_type , signal_wait_time_ms , wait_ti ...
- Nancy 寄宿IIS
一:简介 Nancy是一个轻量级的独立的框架,下面是官网的一些介绍: Nancy 是一个轻量级用于构建基于 HTTP 的 Web 服务,基于 .NET 和 Mono 平台,框架的目标是保持尽可能多的方 ...
- 一元线性回归与R语言
(https://mirrors.tuna.tsinghua.edu.cn/CRAN/)下载好R之后打开,就可以输入命令,如下,我输入 > y=c(61,57,58,40,90,35,68) ...
- la 4490
题解: 这道思路还是比较水的 我们可以等价变形成hi<=7 我们的最优决策是把抽出来的那些相同颜色的书最后插在一起(所以要统计序列中还有没有相同元素的书) f[i][j][k][x]表示前i本书 ...
- rimraf node_modules 快速删除
npm install -g rimraf // 先进行全局安装 rimraf node_modules // 进行删除 -------------------------------- ...