UIUC同学Jia-Bin Huang收集的计算机视觉代码合集

http://blog.sina.com.cn/s/blog_4a1853330100zwgm.htmlv

UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下:

 
这些代码很实用,可以让我们站在巨人的肩膀上~~
 

Topic

Resources

References

Feature Extraction

  1. D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004. [PDF]
  2. Y. Ke and R. Sukthankar, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,CVPR, 2004. [PDF]
  3. J.M. Morel and G.Yu, ASIFT, A new framework for fully affine invariant image comparisonSIAM Journal on Imaging Sciences, 2009. [PDF]
  4. H. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features,ECCV, 2006. [PDF]
  5. K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool, A comparison of affine region detectorsIJCV, 2005. [PDF]
  6. J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regionsBMVC, 2002. [PDF]
  7. A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. CVPR, 2005. [PDF]
  8. E. Shechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007. [PDF]
  9. T. Deselaers and V. Ferrari. Global and Efficient Self-Similarity for Object Classification and DetectionCVPR 2010. [PDF]
  10. N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human DetectionCVPR 2005. [PDF]
  11. A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelopeIJCV, 2001. [PDF]
  12. S. Belongie, J. Malik and J. Puzicha. Shape matching and object recognition using shape contextsPAMI, 2002. [PDF]
  13. K. E. A. van de Sande, T. Gevers and Cees G. M. Snoek, Evaluating Color Descriptors for Object and Scene RecognitionPAMI, 2010.
  14. I. Laptev, On Space-Time Interest Points, IJCV, 2005. [PDF]
  15. J. Kim and K. Grauman, Boundary Preserving Dense Local RegionsCVPR 2011. [PDF]

Image Segmentation

  1. J. Shi and J Malik, Normalized Cuts and Image SegmentationPAMI, 2000 [PDF]
  2. X. Ren and J. Malik. Learning a classification model for segmentation.ICCV, 2003. [PDF]
  3. P. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image SegmentationIJCV 2004. [PDF]
  4. D. Comaniciu, P Meer. Mean Shift: A Robust Approach Toward Feature Space AnalysisPAMI 2002. [PDF]
  5. P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour Detection and Hierarchical Image SegmentationPAMI, 2011. [PDF]
  6. A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi, TurboPixels: Fast Superpixels Using Geometric FlowsPAMI 2009. [PDF]
  7. A. Vedaldi and S. Soatto, Quick Shift and Kernel Methodsfor Mode Seeking,ECCV, 2008. [PDF]
  8. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, SLIC Superpixels, EPFL Technical Report, 2010. [PDF]
  9. A. Y. Yang, J. Wright, S. Shankar Sastry, Y. Ma , Unsupervised Segmentation of Natural Images via Lossy Data CompressionCVIU, 2007. [PDF]
  10. S. Maji, N. Vishnoi and J. Malik, Biased Normalized CutCVPR 2011
  11. E. Akbas and N. Ahuja, “From ramp discontinuities to segmentation tree,”  ACCV 2009. [PDF]
  12. N. Ahuja, “A Transform for Multiscale Image Segmentation by Integrated Edge and Region Detection,” PAMI 1996 [PDF]
  13. M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, Entropy Rate Superpixel Segmentation, CVPR 2011 [PDF]

Object Detection

  • A simple object detector with boosting [Project]

  • INRIA Object Detection and Localization Toolkit [1] [Project]

  • Discriminatively Trained Deformable Part Models [2] [Project]

  • Cascade Object Detection with Deformable Part Models [3] [Project]

  • Poselet [4] [Project]

  • Implicit Shape Model [5] [Project]

  • Viola and Jones's Face Detection [6] [Project]
  1. N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human DetectionCVPR 2005. [PDF]
  2. P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan.
    Object Detection with Discriminatively Trained Part Based ModelsPAMI, 2010 [PDF]
  3. P. Felzenszwalb, R. Girshick, D. McAllester. Cascade Object Detection with Deformable Part ModelsCVPR 2010 [PDF]
  4. L. Bourdev, J. Malik, Poselets: Body Part Detectors Trained Using 3D Human Pose AnnotationsICCV 2009 [PDF]
  5. B. Leibe, A. Leonardis, B. Schiele. Robust Object Detection with Interleaved Categorization and SegmentationIJCV, 2008. [PDF]
  6. P. Viola and M. Jones, Rapid Object Detection Using a Boosted Cascade of Simple FeaturesCVPR 2001. [PDF]

Saliency Detection

  • Itti, Koch, and Niebur' saliency detection [1] [Matlab code]

  • Frequency-tuned salient region detection [2] [Project]

  • Saliency detection using maximum symmetric surround [3] [Project]

  • Attention via Information Maximization [4] [Matlab code]

  • Context-aware saliency detection [5] [Matlab code]

  • Graph-based visual saliency [6] [Matlab code]

  • Saliency detection: A spectral residual approach. [7] [Matlab code]

  • Segmenting salient objects from images and videos. [8] [Matlab code]

  • Saliency Using Natural statistics. [9] [Matlab code]

  • Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]

  • Learning to Predict Where Humans Look [11] [Project]

  • Global Contrast based Salient Region Detection [12] [Project]
  1. L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysisPAMI, 1998. [PDF]
  2. R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In CVPR, 2009. [PDF]
  3. R. Achanta and S. Susstrunk. Saliency detection using maximum symmetric surround. In ICIP, 2010. [PDF]
  4. N. Bruce and J. Tsotsos. Saliency based on information maximization. InNIPS, 2005. [PDF]
  5. S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, 2010. [PDF]
  6. J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. NIPS, 2007. [PDF]
  7. X. Hou and L. Zhang. Saliency detection: A spectral residual approach.CVPR, 2007. [PDF]
  8. E. Rahtu, J. Kannala, M. Salo, and J. Heikkila. Segmenting salient objects from images and videosCVPR, 2010. [PDF]
  9. L. Zhang, M. Tong, T. Marks, H. Shan, and G. Cottrell. Sun: A bayesian framework for saliency using natural statisticsJournal of Vision, 2008. [PDF]
  10. D. Gao and N. Vasconcelos, Discriminant Saliency for Visual Recognition from Cluttered ScenesNIPS, 2004. [PDF]
  11. T. Judd and K. Ehinger and F. Durand and A. Torralba, Learning to Predict Where Humans LookICCV, 2009. [PDF]
  12. M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, S.-M. Hu. Global Contrast based Salient Region DetectionCVPR 2011.

Image Classification

  1. K. Grauman and T. Darrell, The Pyramid Match Kernel: Discriminative Classification with Sets of Image FeaturesICCV 2005. [PDF]
  2. S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene CategoriesCVPR 2006[PDF]
  3. J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained Linear Coding for Image ClassificationCVPR, 2010 [PDF]
  4. J. Yang, K. Yu, Y. Gong, T. Huang, Linear Spatial Pyramid Matching using Sparse Coding for Image ClassificationCVPR, 2009 [PDF]
  5. M. Varma and A. Zisserman, A statistical approach to texture classification from single images, IJCV2005. [PDF]
  6. A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, Multiple Kernels for Object DetectionICCV, 2009. [PDF]
  7. P. Gehler and S. Nowozin, On Feature Combination for Multiclass Object Detection, ICCV, 2009. [PDF]
  8. J. Tighe and S. Lazebnik, SuperParsing: Scalable Nonparametric Image
    Parsing with Superpixels
    , ECCV 2010. [PDF]

Category-Independent Object Proposal

  • Objectness measure [1] [Code]

  • Parametric min-cut [2] [Project]

  • Object proposal [3] [Project]

  1. B. Alexe, T. Deselaers, V. Ferrari, What is an Object?CVPR 2010 [PDF]
  2. J. Carreira and C. Sminchisescu. Constrained Parametric Min-Cuts for Automatic Object SegmentationCVPR 2010. [PDF]
  3. I. Endres and D. Hoiem. Category Independent Object Proposals, ECCV 2010. [PDF]

MRF

  1. Y. Boykov, O. Veksler and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001 [PDF]

Shadow Detection

  • Shadow Detection using Paired Region [Project]

  • Ground shadow detection [Project]

  1. R. Guo, Q. Dai and D. Hoiem, Single-Image Shadow Detection and Removal using Paired Regions, CVPR 2011 [PDF]
  2. J.-F. Lalonde, A. A. Efros, S. G. Narasimhan, Detecting Ground Shadowsin Outdoor Consumer PhotographsECCV 2010 [PDF]

Optical Flow

  1. B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo VisionIJCAI 1981. [PDF]
  2. J. Shi, C. Tomasi, Good Feature to TrackCVPR 1994. [PDF]
  3. C. Liu. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. Doctoral ThesisMIT 2009. [PDF]
  4. B.K.P. Horn and B.G. Schunck, Determining Optical FlowArtificial Intelligence 1981. [PDF]
  5. M. J. Black and P. Anandan, A framework for the robust estimation of optical flow, ICCV 93. [PDF]
  6. D. Sun, S. Roth, and M. J. Black, Secrets of optical flow estimation and their principlesCVPR 2010. [PDF]
  7. T. Brox, J. Malik, Large displacement optical flow: descriptor matching in variational motion estimationPAMI, 2010 [PDF]
  8. T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warpingECCV 2004 [PDF]

Object Tracking

  • Particle filter object tracking [1] [Project]

  • KLT Tracker [2-3] [Project]

  • MILTrack [4] [Code]

  • Incremental Learning for Robust Visual Tracking [5] [Project]

  • Online Boosting Trackers [6-7] [Project]

  • L1 Tracking [8] [Matlab code]

  1. P. Perez, C. Hue, J. Vermaak, and M. Gangnet. Color-Based Probabilistic Tracking ECCV, 2002. [PDF]
  2. B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo VisionIJCAI 1981. [PDF]
  3. J. Shi, C. Tomasi, Good Feature to TrackCVPR 1994. [PDF]
  4. B. Babenko, M. H. Yang, S. Belongie, Robust Object Tracking with Online Multiple Instance LearningPAMI 2011 [PDF]
  5. D. Ross, J. Lim, R.-S. Lin, M.-H. Yang, Incremental Learning for Robust Visual TrackingIJCV 2007 [PDF]
  6. H. Grabner, and H. Bischof, On-line Boosting and Vision, CVPR 2006 [PDF]
  7. H. Grabner, C. Leistner, and H. Bischof, Semi-supervised On-line Boosting for Robust TrackingECCV 2008 [PDF]
  8. X. Mei and H. Ling, Robust Visual Tracking using L1 Minimization, ICCV, 2009. [PDF]

Image Matting

  • Closed Form Matting [Code]

  • Spectral Matting [Project]

  • Learning-based Matting [Code]

  1. A. Levin D. Lischinski and Y. WeissA Closed Form Solution to Natural Image MattingPAMI 2008 [PDF]
  2. A. Levin, A. Rav-Acha, D. Lischinski. Spectral MattingPAMI 2008. [PDF]
  3. Y. Zheng and C. Kambhamettu, Learning Based Digital MattingICCV 2009 [PDF]

Bilateral Filtering

  • Fast Bilateral Filter [Project]

  • Real-time O(1) Bilateral Filtering [Code]

  • SVM for Edge-Preserving Filtering [Code]

  1. Q. Yang, K.-H. Tan and N. Ahuja,  Real-time O(1) Bilateral Filtering
    CVPR 2009. [PDF]
  2. Q. Yang, S. Wang, and N. Ahuja, SVM for Edge-Preserving Filtering
    CVPR 2010. [PDF]

Image Denoising

 

Image Super-Resolution

  • MRF for image super-resolution [Project]

  • Multi-frame image super-resolution [Project]

  • UCSC Super-resolution [Project]

  • Sprarse coding super-resolution [Code]

 

Image Deblurring

  • Eficient Marginal Likelihood Optimization in Blind Deconvolution [Code]

  • Analyzing spatially varying blur [Project]

  • Radon Transform [Code]

 

Image Quality Assessment

  1. L. Zhang, L. Zhang, X. Mou and D. Zhang, FSIM: A Feature Similarity Index for Image Quality AssessmentTIP 2011. [PDF]
  2. N. Damera-Venkata, and T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik,Image Quality Assessment Based on a Degradation ModelTIP 2000. [PDF]
  3. Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, TIP 2004. [PDF]
  4. B. Ghanem, E. Resendiz, and N. Ahuja, Segmentation-Based Perceptual Image Quality Assessment (SPIQA)ICIP 2008. [PDF]

Density Estimation

  • Kernel Density Estimation Toolbox [Project]
 

Dimension Reduction

 

Sparse Coding

   

Low-Rank Matrix Completion

   

Nearest Neighbors matching

 

Steoreo

  1. D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithmsIJCV 2002 [PDF]

Structure from motion

  1. N. Snavely, S. M. Seitz, R. Szeliski. Photo Tourism: Exploring image collections in 3DSIGGRAPH, 2006. [PDF]

Distance Transformation

  • Distance Transforms of Sampled Functions [1] [Project]
  1. P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sampled functionsTechnical report, Cornell University, 2004. [PDF]

Chamfer Matching

  • Fast Directional Chamfer Matching [Code]
  1. M.-Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa, Fast Directional Chamfer MatchingCVPR 2010 [PDF]

Clustering

 

Classification

 

Regression

  • SVM

  • RVM

  • GPR

 

Multiple Kernel Learning (MKL)

  1. S. Sonnenburg, G. Rätsch, C. Schäfer, B. Schölkopf . Large scale multiple kernel learningJMLR, 2006. [PDF]
  2. F. Orabona and L. Jie. Ultra-fast optimization algorithm for sparse multi kernel learning. ICML, 2011. [PDF]
  3. F. Orabona, L. Jie, and B. Caputo. Online-batch strongly convex multi kernel learningCVPR, 2010. [PDF]
  4. A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimplemklJMRL, 2008. [PDF]

Multiple Instance Learning (MIL)

  1. C. Leistner, A. Saffari, and H. Bischof, MIForests: Multiple-Instance Learning with Randomized TreesECCV 2010. [PDF]
  2. Z. Fu, A. Robles-Kelly, and J. Zhou, MILIS: Multiple instance learning with instance selectionPAMI 2010. [PDF]
  3. Y. Chen, J. Bi and J. Z. Wang, MILES: Multiple-Instance Learning via Embedded Instance SelectionPAMI 2006 [PDF]
  4. Yixin Chen and James Z. Wang, Image Categorization by Learning and Reasoning with RegionsJMLR 2004. [PDF]

Other Utilities

  • Code for downloading Flickr images, by James Hays [Code]

  • The Lightspeed Matlab Toolbox by Tom Minka [Code]

  • MATLAB Functions for Multiple View Geometry [Code]

  • Peter's Functions for Computer Vision [Code]

  • Statistical Pattern Recognition Toolbox [Code]
 

Useful Links (dataset, lectures, and other softwares)

Conference Information

Papers

Datasets

Lectures

Source Codes

[ZZ] UIUC同学Jia-Bin Huang收集的计算机视觉代码合集的更多相关文章

  1. UIUC同学Jia-Bin Huang收集的计算机视觉代码合集

    转自:http://blog.sina.com.cn/s/blog_631a4cc40100wrvz.html   UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下: ...

  2. /export/App/zz/phantomjs-1.9.7-linux-x86_64/bin

    /export/App/zz/phantomjs-1.9.7-linux-x86_64/bin

  3. 这些年,我收集的JavaScript代码

    这些年,我收集的JavaScript代码(一) http://www.cnblogs.com/jscode/archive/2012/07/25/2605395.html 这些年,我收集的JavaSc ...

  4. 实时收集Storm日志到ELK集群

    背景 我们的storm实时流计算项目已经上线几个月了,由于各种原因迟迟没有进行监控,每次出现问题都要登录好几台机器,然后使用sed,shell,awk,vi等各种命令来查询原因,效率非常低下,而且有些 ...

  5. Filebeat使用内置的mysql模块收集日志存储到ES集群并使用kibana存储

    Filebeat内置了不少的模块,可以直接使用他们对日志进行收集,支持的模块如下: [root@ELK-chaofeng07 logstash]# filebeat modules list Enab ...

  6. zz深度学习论文合集大全

        Pull requestsIssues Marketplace Explore             Learn Git and GitHub without any code! Using ...

  7. [收集]MVC3 HTML辅助方法集录

    1.跳转链接 @Html.ActionLink("linkText","actionName",routeValues,htmlAttributes) e.g& ...

  8. 这些年,我收集的JavaScript代码(一)

    一.取URL中的参数 function getParameterByName(name) { var match = RegExp('[?&]' + name + '=([^&]*)' ...

  9. [ZZ]AppiumForWindows 菜鸟计划合集

    AppiumForWindows 菜鸟计划 (一) Appium 材料包 AppiumForWindows 菜鸟计划 (二) 源码环境搭建及代码结构 AppiumForWindows 菜鸟计划 (三) ...

随机推荐

  1. SQLLITE HELPER

    using System;using System.Data.SQLite; namespace SQLiteSamples{    class Program    {        //数据库连接 ...

  2. Json string value cannot have line breaks(解决方法)

    点击所在的项目->Proterties->MyEclipse->Validation,把JSON Validator中的Manual和Build的对号给去掉,然后apply,OK. ...

  3. 整理整理Linux命令

    自用.. 1. 查看当前文件目录下,所有文件消耗的磁盘容量 du -h ./ 2. 系统中文件的使用情况 df -h 和du -h显示磁盘大小不一致可能是因为使用rm删除时,文件存在link,没有删除 ...

  4. ArcPy批量计算Mean Center的两个实例

    很久没用arcpy了,碰了好几次壁,把这次做的贴上来,以备下次可以跳过这些简单的问题 import arcpy arcpy.env.workspace = 'C:\Users\Qian\Documen ...

  5. 微服务架构演变过程-SpringCloud

  6. Convert Binary Search Tree to Doubly Linked List

    Convert a binary search tree to doubly linked list with in-order traversal. Example Given a binary s ...

  7. JavaWeb基础-过滤器监听器

    过滤器 1定义:过滤器是一个服务器的组件,他可以截取用户端的请求与响应信息,并对这些信息进行过滤;过滤器可以动态地拦截请求和响应,以变换或使用包含在请求或响应中的信息. 2过滤器的工作原理: 3过滤器 ...

  8. <? extends T> <? super T>

    拿前者来说,这其实就是一个指定的泛型,不过这个泛型可以是T及T的任何子类, 如果一个set方法,是把一个泛型对象T赋值给一个泛型T属性,现在这个T变成了<? extends T>,那么se ...

  9. 学号 20175223 《Java程序设计》第4周学习总结

    学号 20175223 <Java程序设计>第4周学习总结 教材学习内容总结 第五章要点: 要点1:子类与父类:extends.类的树形结构: 要点2:子类的继承性:同一包中与不在同一包中 ...

  10. BiLstm原理

    Lstm这里就不说了,直接说Bilstm. 前向的LSTM与后向的LSTM结合成BiLSTM.比如,我们对“我爱中国”这句话进行编码,模型如图所示. 前向的依次输入“我”,“爱”,“中国”得到三个向量 ...