感悟:预处理next[ ]数组求解B串的“自我匹配过程”,思路与KMP类似,目标得到最大相同的前缀、后缀。

([1—>k]==[i-k+1,i]),可以根据由前往后,利用前面已知递推得到后面未知next[ ]。

KMP,利用B串自身的next[ ](最大相同前缀,后缀)数组,当发生不匹配位置时快速实现B串指针位置的精确滑动,从而加快串的匹配效率。

kmp算法是一个效率非常高的字符串匹配算法。不过由于其难以理解,所以在很长的一段时间内一直没有搞懂。虽然网上有很多资料,但是鲜见好的博客能简单明了地将其讲清楚。在此,综合网上比较好的几个博客(参见最后),尽自己的努力争取将kmp算法思想和实现讲清楚。

kmp算法完成的任务是:给定两个字符串O和f,长度分别为n和m,判断f是否在O中出现,如果出现则返回出现的位置。常规方法是遍历a的每一个位置,然后从该位置开始和b进行匹配,但是这种方法的复杂度是O(nm)。kmp算法通过一个O(m)的预处理,使匹配的复杂度降为O(n+m)。

kmp算法思想

我们首先用一个图来描述kmp算法的思想。在字符串O中寻找f,当匹配到位置i时两个字符串不相等,这时我们需要将字符串f向前移动。常规方法是每次向前移动一位,但是它没有考虑前i-1位已经比较过这个事实,所以效率不高。事实上,如果我们提前计算某些信息,就有可能一次前移多位。假设我们根据已经获得的信息知道可以前移k位,我们分析移位前后的f有什么特点。我们可以得到如下的结论:

  • A段字符串是f的一个前缀。
  • B段字符串是f的一个后缀。
  • A段字符串和B段字符串相等。

所以前移k位之后,可以继续比较位置i的前提是f的前i-1个位置满足:长度为i-k-1的前缀A和后缀B相同。只有这样,我们才可以前移k位后从新的位置继续比较。

所以kmp算法的核心即是计算字符串f每一个位置之前的字符串的前缀和后缀公共部分的最大长度(不包括字符串本身,否则最大长度始终是字符串本身)。获得f每一个位置的最大公共长度之后,就可以利用该最大公共长度快速和字符串O比较。当每次比较到两个字符串的字符不同时,我们就可以根据最大公共长度将字符串f向前移动(已匹配长度-最大公共长度)位,接着继续比较下一个位置。事实上,字符串f的前移只是概念上的前移,只要我们在比较的时候从最大公共长度之后比较f和O即可达到字符串f前移的目的。

next数组计算

理解了kmp算法的基本原理,下一步就是要获得字符串f每一个位置的最大公共长度。这个最大公共长度在算法导论里面被记为next数组。在这里要注意一点,next数组表示的是长度,下标从1开始;但是在遍历原字符串时,下标还是从0开始。假设我们现在已经求得next[1]、next[2]、……next[i],分别表示长度为1到i的字符串的前缀和后缀最大公共长度,现在要求next[i+1]。由上图我们可以看到,如果位置i和位置next[i]处的两个字符相同(下标从零开始),则next[i+1]等于next[i]加1。如果两个位置的字符不相同,我们可以将长度为next[i]的字符串继续分割,获得其最大公共长度next[next[i]],然后再和位置i的字符比较。这是因为长度为next[i]前缀和后缀都可以分割成上部的构造,如果位置next[next[i]]和位置i的字符相同,则next[i+1]就等于next[next[i]]加1。如果不相等,就可以继续分割长度为next[next[i]]的字符串,直到字符串长度为0为止。由此我们可以写出求next数组的代码(java版):

public int[] getNext(String b)
{
int len=b.length();
int j=0; int next[]=new int[len+1];//next表示长度为i的字符串前缀和后缀的最长公共部分,从1开始
next[0]=next[1]=0; for(int i=1;i<len;i++)//i表示字符串的下标,从0开始
{//j在每次循环开始都表示next[i]的值,同时也表示需要比较的下一个位置
while(j>0&&b.charAt(i)!=b.charAt(j))j=next[j];
if(b.charAt(i)==b.charAt(j))j++;
next[i+1]=j;
}
return next;
}

上述代码需要注意的问题是,我们求取的next数组表示长度为1到m的字符串f前缀的最大公共长度,所以需要多分配一个空间。而在遍历字符串f的时候,还是从下标0开始(位置0和1的next值为0,所以放在循环外面),到m-1为止。代码的结构和上面的讲解一致,都是利用前面的next值去求下一个next值。

字符串匹配

计算完成next数组之后,我们就可以利用next数组在字符串O中寻找字符串f的出现位置。匹配的代码和求next数组的代码非常相似,因为匹配的过程和求next数组的过程其实是一样的。假设现在字符串f的前i个位置都和从某个位置开始的字符串O匹配,现在比较第i+1个位置。如果第i+1个位置相同,接着比较第i+2个位置;如果第i+1个位置不同,则出现不匹配,我们依旧要将长度为i的字符串分割,获得其最大公共长度next[i],然后从next[i]继续比较两个字符串。这个过程和求next数组一致,所以可以匹配代码如下(java版):

public void search(String original, String find, int next[]) {
int j = 0;
for (int i = 0; i < original.length(); i++) {
while (j > 0 && original.charAt(i) != find.charAt(j))
j = next[j];
if (original.charAt(i) == find.charAt(j))
j++;
if (j == find.length()) {
System.out.println("find at position " + (i - j));
System.out.println(original.subSequence(i - j + 1, i + 1));
j = next[j];
}
}
}

上述代码需要注意的一点是,每次我们得到一个匹配之后都要对j重新赋值。

复杂度

kmp算法的复杂度是O(n+m),可以采用均摊分析来解答,具体可参考算法导论。

参考资料

1.    kmp算法小结

2.     kmp算法详解

3.     kmp算法

4.     kmp算法的理解与实现

开源实现

如果大家想实际用该算法,给大家提供一个实例:java记事本

PS:

最后再给大家补几个图,希望有助于大家理解。

自身结构重复展开

KMP算法:

    KMP算法的关键在于找到模式P的前缀函数next。

    在此以模式P={ababababca}为例,阐述一下KMP前缀函数的建立意义。

考察朴素的字符串匹配算法的操作过程,当上述模式当中前四个字符匹配成功后,如果第五个字符匹配失败,说明第文本中对应的第五个字符不是a(建议在纸上画一下),还说明了对应的四个字符为abab,将P右移一个位置发现仍然不匹配,右移两个、三个、四个也是,但是右移五个未必。因此能否不像上述方法那样一步一步右移,而是直接右移五个位置开始进行判断。

其实在上面匹配过程当中,每次成功的匹配就包含了一定量的信息,而分析模式当中ab的重复也可给人以匹配失败后,可否每次移动两个位置再进行匹配的启发,这样充分发掘模式本身的特点可以建立一个next函数,从而确定每次匹配失败后移动的长度。

对于上述模式P发掘的next函数为

伪代码如下:

浅谈KMP“串”的模式匹配问题的更多相关文章

  1. 浅谈KMP算法及其next[]数组

    KMP算法是众多优秀的模式串匹配算法中较早诞生的一个,也是相对最为人所知的一个. 算法实现简单,运行效率高,时间复杂度为O(n+m)(n和m分别为目标串和模式串的长度) 当字符串长度和字符集大小的比值 ...

  2. 浅谈 KMP 算法

    最近在复习数据结构,学到了 KMP 算法这一章,似乎又迷糊了,记得第一次学习这个算法时,老师在课堂上讲得唾沫横飞,十分有激情,而我们在下面听得一脸懵比,啥?这是个啥算法?啥玩意?再去看看书,完全听不懂 ...

  3. 浅谈KMP模式匹配算法

    普通的模式匹配算法(BF算法) 子串的定位操作通常称为模式匹配算法 假设有一个需求,需要我们从串"a b a b c a b c a c b a b"中,寻找内容为"a ...

  4. 【ZOJ】3785 What day is that day? ——浅谈KMP在ACM竞赛中的暴力打表找规律中的应用

    转载请声明出处:http://www.cnblogs.com/kevince/p/3887827.html    ——By Kevince 首先声明一下,这里的规律指的是循环,即找到最小循环周期. 这 ...

  5. 单模式串匹配----浅谈kmp算法

    模式串匹配,顾名思义,就是看一个串是否在另一个串中出现,出现了几次,在哪个位置出现: p.s.  模式串是前者,并且,我们称后一个 (也就是被匹配的串)为文本串: 在这篇博客的代码里,s1均为文本串, ...

  6. 浅谈KMP算法

    一.介绍 烤馍片KMP算法是用来处理字符串匹配问题的.比如说给你两个字符串A,B,问B是不是A的子串? 比如,eg就是aeggx的子串 一般讲字符串A称为主串,用来匹配的B串称为模式串 定义n为字符串 ...

  7. 【字符串算法3】浅谈KMP算法

    [字符串算法1] 字符串Hash(优雅的暴力) [字符串算法2]Manacher算法 [字符串算法3]KMP算法 这里将讲述  [字符串算法3]KMP算法 Part1 理解KMP的精髓和思想 其实KM ...

  8. 浅谈kmp

    简介: 一种由Knuth(D.E.Knuth).Morris(J.H.Morris)和Pratt(V.R.Pratt)三人设计的线性时间字符串匹配算法.这个算法不用计算变迁函数δ,匹配时间为Θ(n), ...

  9. 【文文殿下】浅谈KMP算法next数组与循环节的关系

    KMP算法 KMP算法是一种字符串匹配算法,他可以在O(n+m)的时间内求出一个模式串在另一个模式串下出现的次数. KMP算法是利用next数组进行自匹配,然后来进行匹配的. Next数组 Next数 ...

随机推荐

  1. git 小乌龟安装教程

    一.windows系统安装git 首先下载git for windows客户端http://msysgit.github.io/ 安装过程没什么特别的,不停next就ok了     图太多就不继续了~ ...

  2. DDD工作流持久化(十六)

    找到对应的sql文件执行sql语句 产生如下的表: 添加引用: 添加命名空间: using System.Activities.DurableInstancing; using System.Runt ...

  3. Windows Server 2012 R2 设置 NTP 服务

    其实和以前的server版本配置没啥不一样 都是先改注册表: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Config\ ...

  4. [转] 浅谈session,cookie,sessionStorage,localStorage的区别及应用场景

    浏览器的缓存机制提供了可以将用户数据存储在客户端上的方式,可以利用cookie,session等跟服务端进行数据交互. 一.cookie和session cookie和session都是用来跟踪浏览器 ...

  5. [LeetCode] Best Time to Buy and Sell Stock 6道合集【DP】

    1. Best Time to Buy and Sell Stock 2. Best Time to Buy and Sell Stock II 3. Best Time to Buy and Sel ...

  6. uva 1232

    题意: 建筑物在多长的部分是最高的成为该建筑物的覆盖度.求所有建筑物的覆盖度之和. 链接: https://vjudge.net/contest/202699#problem/E 题解: 这道题还是挺 ...

  7. 【译】理解JavaScript闭包——新手指南

    闭包是JavaScript中一个基本的概念,每个JavaScript开发者都应该知道和理解的.然而,很多新手JavaScript开发者对这个概念还是很困惑的. 正确理解闭包可以帮助你写出更好.更高效. ...

  8. Azure附加新磁盘,差点掉进去的那个坑,注意临时数据盘

    接今早的mysql问题,最终原因是mysql数据库的数据库文件以及pid丢失,当我还纳闷为什么丢失的情况下 我研究了下Azure云平台的数据磁盘原理,在Azure下,新建vm(centos)后只会提供 ...

  9. scrapy笔记

    1.关于请求url状态码重定向问题: from scrapy import Request handle_httpstatus_list = [404, 403, 500, 503, 521, 522 ...

  10. MySQL事务提交过程(二)

    上一篇文章我们介绍了在关闭binlog的情况下,事务提交的大概流程.之所以关闭binlog,是因为开启binlog后事务提交流程会变成两阶段提交,这里的两阶段提交并不涉及分布式事务,当然mysql把它 ...