朴素贝叶斯分类器及Python实现
贝叶斯定理
贝叶斯定理是通过对观测值概率分布的主观判断(即先验概率)进行修正的定理,在概率论中具有重要地位。
先验概率分布(边缘概率)是指基于主观判断而非样本分布的概率分布,后验概率(条件概率)是根据样本分布和未知参数的先验概率分布求得的条件概率分布。
贝叶斯公式:
P(A∩B) = P(A)*P(B|A) = P(B)*P(A|B)
变形得:
P(A|B)=P(B|A)*P(A)/P(B)
其中
P(A)
是A的先验概率或边缘概率,称作"先验"是因为它不考虑B因素。P(A|B)
是已知B发生后A的条件概率,也称作A的后验概率。P(B|A)
是已知A发生后B的条件概率,也称作B的后验概率,这里称作似然度。P(B)
是B的先验概率或边缘概率,这里称作标准化常量。P(B|A)/P(B)
称作标准似然度。
朴素贝叶斯分类(Naive Bayes)
朴素贝叶斯分类器在估计类条件概率时假设属性之间条件独立。
首先定义
x = {a1,a2,...}
为一个样本向量,a为一个特征属性div = {d1 = [l1,u1],...}
特征属性的一个划分class = {y1,y2,...}
样本所属的类别
算法流程:
(1) 通过样本集中类别的分布,对每个类别计算先验概率p(y[i])
(2) 计算每个类别下每个特征属性划分的频率p(a[j] in d[k] | y[i])
(3) 计算每个样本的p(x|y[i])
p(x|y[i]) = p(a[1] in d | y[i]) * p(a[2] in d | y[i]) * ...
样本的所有特征属性已知,所以特征属性所属的区间d已知。
可以通过(2)确定p(a[k] in d | y[i])
的值,从而求得p(x|y[i])
。
(4) 由贝叶斯定理得:
p(y[i]|x) = ( p(x|y[i]) * p(y[i]) ) / p(x)
因为分母相同,只需计算分子。
p(y[i]|x)
是观测样本属于分类y[i]的概率,找出最大概率对应的分类作为分类结果。
示例:
导入数据集
{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 1, a2 = 0, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 0, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}
计算类别的先验概率
P(C = 0) = 0.5
P(C = 1) = 0.5
计算每个特征属性条件概率:
P(a1 = 0 | C = 0) = 0.3
P(a1 = 1 | C = 0) = 0.7
P(a2 = 0 | C = 0) = 0.4
P(a2 = 1 | C = 0) = 0.6
P(a1 = 0 | C = 1) = 0.5
P(a1 = 1 | C = 1) = 0.5
P(a2 = 0 | C = 1) = 0.7
P(a2 = 1 | C = 1) = 0.3
测试样本:
x = { a1 = 1, a2 = 2}
p(x | C = 0) = p(a1 = 1 | C = 0) * p( 2 = 2 | C = 0) = 0.3 * 0.6 = 0.18
p(x | C = 1) = p(a1 = 1 | C = 1) * p (a2 = 2 | C = 1) = 0.5 * 0.3 = 0.15
计算P(C | x) * p(x):
P(C = 0) * p(x | C = 1) = 0.5 * 0.18 = 0.09
P(C = 1) * p(x | C = 2) = 0.5 * 0.15 = 0.075
所以认为测试样本属于类型C1
Python实现
朴素贝叶斯分类器的训练过程为计算(1),(2)中的概率表,应用过程为计算(3),(4)并寻找最大值。
还是使用原来的接口进行类封装:
from numpy import *
class NaiveBayesClassifier(object):
def __init__(self):
self.dataMat = list()
self.labelMat = list()
self.pLabel1 = 0
self.p0Vec = list()
self.p1Vec = list()
def loadDataSet(self,filename):
fr = open(filename)
for line in fr.readlines():
lineArr = line.strip().split()
dataLine = list()
for i in lineArr:
dataLine.append(float(i))
label = dataLine.pop() # pop the last column referring to label
self.dataMat.append(dataLine)
self.labelMat.append(int(label))
def train(self):
dataNum = len(self.dataMat)
featureNum = len(self.dataMat[0])
self.pLabel1 = sum(self.labelMat)/float(dataNum)
p0Num = zeros(featureNum)
p1Num = zeros(featureNum)
p0Denom = 1.0
p1Denom = 1.0
for i in range(dataNum):
if self.labelMat[i] == 1:
p1Num += self.dataMat[i]
p1Denom += sum(self.dataMat[i])
else:
p0Num += self.dataMat[i]
p0Denom += sum(self.dataMat[i])
self.p0Vec = p0Num/p0Denom
self.p1Vec = p1Num/p1Denom
def classify(self, data):
p1 = reduce(lambda x, y: x * y, data * self.p1Vec) * self.pLabel1
p0 = reduce(lambda x, y: x * y, data * self.p0Vec) * (1.0 - self.pLabel1)
if p1 > p0:
return 1
else:
return 0
def test(self):
self.loadDataSet('testNB.txt')
self.train()
print(self.classify([1, 2]))
if __name__ == '__main__':
NB = NaiveBayesClassifier()
NB.test()
Matlab
Matlab的标准工具箱提供了对朴素贝叶斯分类器的支持:
trainData = [0 1; -1 0; 2 2; 3 3; -2 -1;-4.5 -4; 2 -1; -1 -3];
group = [1 1 -1 -1 1 1 -1 -1]';
model = fitcnb(trainData, group)
testData = [5 2;3 1;-4 -3];
predict(model, testData)
fitcnb
用来训练模型,predict
用来预测。
朴素贝叶斯分类器及Python实现的更多相关文章
- (数据科学学习手札30)朴素贝叶斯分类器的原理详解&Python与R实现
一.简介 要介绍朴素贝叶斯(naive bayes)分类器,就不得不先介绍贝叶斯决策论的相关理论: 贝叶斯决策论(bayesian decision theory)是概率框架下实施决策的基本方法.对分 ...
- 用scikit-learn实现朴素贝叶斯分类器 转
原文:http://segmentfault.com/a/1190000002472791 朴素贝叶斯(Naive Bayes Classifier)是一种「天真」的算法(假定所有特征发生概率是独立的 ...
- 朴素贝叶斯分类器(Naive Bayes)
1. 贝叶斯定理 如果有两个事件,事件A和事件B.已知事件A发生的概率为p(A),事件B发生的概率为P(B),事件A发生的前提下.事件B发生的概率为p(B|A),事件B发生的前提下.事件A发生的概率为 ...
- 朴素贝叶斯分类器基本代码 && n折交叉优化
自己也是刚刚入门.. 没脸把自己的代码放上去,先用别人的. 加上自己的解析,挺全面的,希望有用. import re import pandas as pd import numpy as np fr ...
- 数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes
贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类.眼下研究较多的贝叶斯分类器主要有四种, ...
- 十大经典数据挖掘算法(9) 朴素贝叶斯分类器 Naive Bayes
贝叶斯分类器 贝叶斯分类分类原则是一个对象的通过先验概率.贝叶斯后验概率公式后计算,也就是说,该对象属于一类的概率.选择具有最大后验概率的类作为对象的类属.现在更多的研究贝叶斯分类器,有四个,每间:N ...
- 机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)
朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/6014 ...
- 朴素贝叶斯分类器的应用 Naive Bayes classifier
一.病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难. 某个医院早上收了六个门诊病人,如下表. 症状 职业 疾病 打喷嚏 护士 感冒 打喷嚏 农夫 过敏 头痛 建筑工 ...
- PGM学习之三 朴素贝叶斯分类器(Naive Bayes Classifier)
介绍朴素贝叶斯分类器的文章已经很多了.本文的目的是通过基本概念和微小实例的复述,巩固对于朴素贝叶斯分类器的理解. 一 朴素贝叶斯分类器基础回顾 朴素贝叶斯分类器基于贝叶斯定义,特别适用于输入数据维数较 ...
随机推荐
- Collision (hdu-5114
题意:你有一个以(0, 0), (x, 0), (0, y), (x, y)为边界点的四边形,给你两个点从(x1, y1), (x2, y2)的点发射,以(1, 1)的速度走,碰到边界会反射,问你最终 ...
- 牛客练习赛42 C 反着计算贡献
https://ac.nowcoder.com/acm/contest/393/C 题意 给你一个矩阵, 每次从每行挑选一个数,组成一个排列,排列的和为不重复数字之和,求所有排列的和(n,m<= ...
- Jetbrain Pycharm Theme
https://github.com/ChrisRM/material-theme-jetbrains
- Html5与Css3知识点拾遗(四)
web图像 JPEG:适用于大多数照片,颜色较多,可接受质量损失的图像 PNG-8:适用标识.重复的图案以及其他颜色较少的图像或具有连续颜色的图像 PNG-24:不支持颜色更多的图像,适用与颜色丰富且 ...
- Word中的段落
Word文档中的块级内容的最基本单位是段落,段落用<p>元素进行存储.段落定义在新行中开始,段落可以包含三方面的信息:可选的段落属性.内嵌的内容(通常为文本)和用于比较两个文档的内容的一组 ...
- 删除sheet
/// <summary> /// 删除sheet /// </summary> /// <param name="fileName">< ...
- mac virtualbox 安装
在Mac上装virtualbox提示安装失败!!! 安全性与隐私的通用下点击允许!!!
- Vmware Vtop基本使用
俗话说:"最了解孩子的莫过于亲妈",算了编不下去了,简而言之就是我们想知道虚机的详情可以通过Vmware Vtop登录宿主机进行查看,直接上干货. 有这些信息我们可以从Vt ...
- OkHttp 入门篇
OkHttp是一个HTTP & HTTP2的客户端,能够用来进行Android 和 Java 开发. HTTP是现代应用的最基本的网络环境.让你的HTTP更加有效的工作能够让你的东西加载更快而 ...
- 用document.readyState实现网页加载进度条
概述 之前以为给网页设置加载进度条很麻烦,今天一学真是超级简单,记录下来供以后开发时参考,相信对其他人也有用. readyState 主要运用了document.readyState和nprogres ...