贝叶斯定理

贝叶斯定理是通过对观测值概率分布的主观判断(即先验概率)进行修正的定理,在概率论中具有重要地位。

先验概率分布(边缘概率)是指基于主观判断而非样本分布的概率分布,后验概率(条件概率)是根据样本分布和未知参数的先验概率分布求得的条件概率分布。

贝叶斯公式:

P(A∩B) = P(A)*P(B|A) = P(B)*P(A|B)

变形得:

P(A|B)=P(B|A)*P(A)/P(B)

其中

  • P(A)是A的先验概率或边缘概率,称作"先验"是因为它不考虑B因素。

  • P(A|B)是已知B发生后A的条件概率,也称作A的后验概率。

  • P(B|A)是已知A发生后B的条件概率,也称作B的后验概率,这里称作似然度。

  • P(B)是B的先验概率或边缘概率,这里称作标准化常量。

  • P(B|A)/P(B)称作标准似然度。

朴素贝叶斯分类(Naive Bayes)

朴素贝叶斯分类器在估计类条件概率时假设属性之间条件独立。

首先定义

  • x = {a1,a2,...}为一个样本向量,a为一个特征属性

  • div = {d1 = [l1,u1],...} 特征属性的一个划分

  • class = {y1,y2,...}样本所属的类别

算法流程:

(1) 通过样本集中类别的分布,对每个类别计算先验概率p(y[i])

(2) 计算每个类别下每个特征属性划分的频率p(a[j] in d[k] | y[i])

(3) 计算每个样本的p(x|y[i])

p(x|y[i]) = p(a[1] in d | y[i]) * p(a[2] in d | y[i]) * ...

样本的所有特征属性已知,所以特征属性所属的区间d已知。

可以通过(2)确定p(a[k] in d | y[i])的值,从而求得p(x|y[i])

(4) 由贝叶斯定理得:

p(y[i]|x) = ( p(x|y[i]) * p(y[i]) ) / p(x)

因为分母相同,只需计算分子。

p(y[i]|x)是观测样本属于分类y[i]的概率,找出最大概率对应的分类作为分类结果。

示例:

导入数据集

{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}

{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}

{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}

{a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}

{a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}

{a1 = 1, a2 = 0, C = 0} {a1 = 1, a2 = 0, C = 1}

{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 0, C = 1}

{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}

{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}

{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}

计算类别的先验概率

P(C = 0) = 0.5

P(C = 1) = 0.5

计算每个特征属性条件概率:

P(a1 = 0 | C = 0) = 0.3

P(a1 = 1 | C = 0) = 0.7

P(a2 = 0 | C = 0) = 0.4

P(a2 = 1 | C = 0) = 0.6

P(a1 = 0 | C = 1) = 0.5

P(a1 = 1 | C = 1) = 0.5

P(a2 = 0 | C = 1) = 0.7

P(a2 = 1 | C = 1) = 0.3

测试样本:

x = { a1 = 1, a2 = 2}

p(x | C = 0) = p(a1 = 1 | C = 0) * p( 2 = 2 | C = 0) = 0.3 * 0.6 = 0.18

p(x | C = 1) = p(a1 = 1 | C = 1) * p (a2 = 2 | C = 1) = 0.5 * 0.3 = 0.15

计算P(C | x) * p(x):

P(C = 0) * p(x | C = 1) = 0.5 * 0.18 = 0.09

P(C = 1) * p(x | C = 2) = 0.5 * 0.15 = 0.075

所以认为测试样本属于类型C1

Python实现

朴素贝叶斯分类器的训练过程为计算(1),(2)中的概率表,应用过程为计算(3),(4)并寻找最大值。

还是使用原来的接口进行类封装:

from numpy import *

class NaiveBayesClassifier(object):

	def __init__(self):
self.dataMat = list()
self.labelMat = list()
self.pLabel1 = 0
self.p0Vec = list()
self.p1Vec = list() def loadDataSet(self,filename):
fr = open(filename)
for line in fr.readlines():
lineArr = line.strip().split()
dataLine = list()
for i in lineArr:
dataLine.append(float(i))
label = dataLine.pop() # pop the last column referring to label
self.dataMat.append(dataLine)
self.labelMat.append(int(label)) def train(self):
dataNum = len(self.dataMat)
featureNum = len(self.dataMat[0])
self.pLabel1 = sum(self.labelMat)/float(dataNum)
p0Num = zeros(featureNum)
p1Num = zeros(featureNum)
p0Denom = 1.0
p1Denom = 1.0
for i in range(dataNum):
if self.labelMat[i] == 1:
p1Num += self.dataMat[i]
p1Denom += sum(self.dataMat[i])
else:
p0Num += self.dataMat[i]
p0Denom += sum(self.dataMat[i])
self.p0Vec = p0Num/p0Denom
self.p1Vec = p1Num/p1Denom def classify(self, data):
p1 = reduce(lambda x, y: x * y, data * self.p1Vec) * self.pLabel1
p0 = reduce(lambda x, y: x * y, data * self.p0Vec) * (1.0 - self.pLabel1)
if p1 > p0:
return 1
else:
return 0 def test(self):
self.loadDataSet('testNB.txt')
self.train()
print(self.classify([1, 2])) if __name__ == '__main__':
NB = NaiveBayesClassifier()
NB.test()

Matlab

Matlab的标准工具箱提供了对朴素贝叶斯分类器的支持:

trainData = [0 1; -1 0; 2 2; 3 3; -2 -1;-4.5 -4; 2 -1; -1 -3];
group = [1 1 -1 -1 1 1 -1 -1]';
model = fitcnb(trainData, group)
testData = [5 2;3 1;-4 -3];
predict(model, testData)

fitcnb用来训练模型,predict用来预测。

朴素贝叶斯分类器及Python实现的更多相关文章

  1. (数据科学学习手札30)朴素贝叶斯分类器的原理详解&Python与R实现

    一.简介 要介绍朴素贝叶斯(naive bayes)分类器,就不得不先介绍贝叶斯决策论的相关理论: 贝叶斯决策论(bayesian decision theory)是概率框架下实施决策的基本方法.对分 ...

  2. 用scikit-learn实现朴素贝叶斯分类器 转

    原文:http://segmentfault.com/a/1190000002472791 朴素贝叶斯(Naive Bayes Classifier)是一种「天真」的算法(假定所有特征发生概率是独立的 ...

  3. 朴素贝叶斯分类器(Naive Bayes)

    1. 贝叶斯定理 如果有两个事件,事件A和事件B.已知事件A发生的概率为p(A),事件B发生的概率为P(B),事件A发生的前提下.事件B发生的概率为p(B|A),事件B发生的前提下.事件A发生的概率为 ...

  4. 朴素贝叶斯分类器基本代码 && n折交叉优化

    自己也是刚刚入门.. 没脸把自己的代码放上去,先用别人的. 加上自己的解析,挺全面的,希望有用. import re import pandas as pd import numpy as np fr ...

  5. 数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes

    贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类.眼下研究较多的贝叶斯分类器主要有四种, ...

  6. 十大经典数据挖掘算法(9) 朴素贝叶斯分类器 Naive Bayes

    贝叶斯分类器 贝叶斯分类分类原则是一个对象的通过先验概率.贝叶斯后验概率公式后计算,也就是说,该对象属于一类的概率.选择具有最大后验概率的类作为对象的类属.现在更多的研究贝叶斯分类器,有四个,每间:N ...

  7. 机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)

    朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/6014 ...

  8. 朴素贝叶斯分类器的应用 Naive Bayes classifier

    一.病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难. 某个医院早上收了六个门诊病人,如下表. 症状 职业 疾病 打喷嚏 护士 感冒  打喷嚏 农夫 过敏  头痛 建筑工 ...

  9. PGM学习之三 朴素贝叶斯分类器(Naive Bayes Classifier)

    介绍朴素贝叶斯分类器的文章已经很多了.本文的目的是通过基本概念和微小实例的复述,巩固对于朴素贝叶斯分类器的理解. 一 朴素贝叶斯分类器基础回顾 朴素贝叶斯分类器基于贝叶斯定义,特别适用于输入数据维数较 ...

随机推荐

  1. kbmmw 做REST 服务签名认证的一种方式

    一般对外提供提供REST 服务,由于信息安全的问题, 都要采用签名认证,今天简单说一下在KBMMW 中如何 实现简单的签名服务? 整个签名服务,模仿阿里大鱼的认证方式,大家可以根据实际情况自己修改. ...

  2. Anton 上课题

    Anton 上课题 Anton likes to play chess. Also he likes to do programming. No wonder that he decided to a ...

  3. 多态&虚函数

     (1).对象类型:           a.静态类型:对象声明时的类型,编译的时候确定           b.动态类型:对象的类型是运行时才能确定的 class A {}; class B:pub ...

  4. 6.装配Bean基于注解

    1.注解:就是一个类,使用@注解名称 开发中:使用注解 取代 xml配置文件. @Component取代<bean class=""> @Component(" ...

  5. HAProxy出现"远程主机强迫关闭了一个现有的连接 " 的错误及解决

    使用haproxy作为sql server 的负载均衡器. 使用了文档中的示例配置项: timeout client 50s        timeout server 50s 采用这个配置项,有时会 ...

  6. 从navicat中导入sql文件过大:Got a packet bigger than 'max_allowed_packet' bytes

    失败背景:刚才通过navicat向本地mysql数据库中导入sql文件.第一个sql文件(多个表)大小为967M,导入成功: 第二个sql(单个表)大小为50.1M,导入失败. 1.在navicat中 ...

  7. 完善版封装canvas分享组件

    import regeneratorRuntime from "../../../lib/regenerator-runtime/runtime"; let ctx = false ...

  8. setAttribute的浏览器兼容性(转)

    1.element要用getElementById or ByTagName来得到, 2.setAttribute("class", vName)中class是指改变"c ...

  9. jQuery应用实例1:定时弹出图片

    以前用JS实现的:http://www.cnblogs.com/xuyiqing/p/8373064.html 这里利用jQuery实现,并且做得更完善: <!DOCTYPE html> ...

  10. Liferay的一些应用领域

    Liferay的用途是快速的部署内外站点,统一权限管理,开发Web热插拔插件,并不是所有系统都适合 不适合Liferay的一些应用领域: 1.独立认证.简单的系统,比如一些简单的增删改查:2.复杂业务 ...