朴素贝叶斯分类器及Python实现
贝叶斯定理
贝叶斯定理是通过对观测值概率分布的主观判断(即先验概率)进行修正的定理,在概率论中具有重要地位。
先验概率分布(边缘概率)是指基于主观判断而非样本分布的概率分布,后验概率(条件概率)是根据样本分布和未知参数的先验概率分布求得的条件概率分布。
贝叶斯公式:
P(A∩B) = P(A)*P(B|A) = P(B)*P(A|B)
变形得:
P(A|B)=P(B|A)*P(A)/P(B)
其中
P(A)
是A的先验概率或边缘概率,称作"先验"是因为它不考虑B因素。P(A|B)
是已知B发生后A的条件概率,也称作A的后验概率。P(B|A)
是已知A发生后B的条件概率,也称作B的后验概率,这里称作似然度。P(B)
是B的先验概率或边缘概率,这里称作标准化常量。P(B|A)/P(B)
称作标准似然度。
朴素贝叶斯分类(Naive Bayes)
朴素贝叶斯分类器在估计类条件概率时假设属性之间条件独立。
首先定义
x = {a1,a2,...}
为一个样本向量,a为一个特征属性div = {d1 = [l1,u1],...}
特征属性的一个划分class = {y1,y2,...}
样本所属的类别
算法流程:
(1) 通过样本集中类别的分布,对每个类别计算先验概率p(y[i])
(2) 计算每个类别下每个特征属性划分的频率p(a[j] in d[k] | y[i])
(3) 计算每个样本的p(x|y[i])
p(x|y[i]) = p(a[1] in d | y[i]) * p(a[2] in d | y[i]) * ...
样本的所有特征属性已知,所以特征属性所属的区间d已知。
可以通过(2)确定p(a[k] in d | y[i])
的值,从而求得p(x|y[i])
。
(4) 由贝叶斯定理得:
p(y[i]|x) = ( p(x|y[i]) * p(y[i]) ) / p(x)
因为分母相同,只需计算分子。
p(y[i]|x)
是观测样本属于分类y[i]的概率,找出最大概率对应的分类作为分类结果。
示例:
导入数据集
{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 1, a2 = 0, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 0, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}
计算类别的先验概率
P(C = 0) = 0.5
P(C = 1) = 0.5
计算每个特征属性条件概率:
P(a1 = 0 | C = 0) = 0.3
P(a1 = 1 | C = 0) = 0.7
P(a2 = 0 | C = 0) = 0.4
P(a2 = 1 | C = 0) = 0.6
P(a1 = 0 | C = 1) = 0.5
P(a1 = 1 | C = 1) = 0.5
P(a2 = 0 | C = 1) = 0.7
P(a2 = 1 | C = 1) = 0.3
测试样本:
x = { a1 = 1, a2 = 2}
p(x | C = 0) = p(a1 = 1 | C = 0) * p( 2 = 2 | C = 0) = 0.3 * 0.6 = 0.18
p(x | C = 1) = p(a1 = 1 | C = 1) * p (a2 = 2 | C = 1) = 0.5 * 0.3 = 0.15
计算P(C | x) * p(x):
P(C = 0) * p(x | C = 1) = 0.5 * 0.18 = 0.09
P(C = 1) * p(x | C = 2) = 0.5 * 0.15 = 0.075
所以认为测试样本属于类型C1
Python实现
朴素贝叶斯分类器的训练过程为计算(1),(2)中的概率表,应用过程为计算(3),(4)并寻找最大值。
还是使用原来的接口进行类封装:
from numpy import *
class NaiveBayesClassifier(object):
def __init__(self):
self.dataMat = list()
self.labelMat = list()
self.pLabel1 = 0
self.p0Vec = list()
self.p1Vec = list()
def loadDataSet(self,filename):
fr = open(filename)
for line in fr.readlines():
lineArr = line.strip().split()
dataLine = list()
for i in lineArr:
dataLine.append(float(i))
label = dataLine.pop() # pop the last column referring to label
self.dataMat.append(dataLine)
self.labelMat.append(int(label))
def train(self):
dataNum = len(self.dataMat)
featureNum = len(self.dataMat[0])
self.pLabel1 = sum(self.labelMat)/float(dataNum)
p0Num = zeros(featureNum)
p1Num = zeros(featureNum)
p0Denom = 1.0
p1Denom = 1.0
for i in range(dataNum):
if self.labelMat[i] == 1:
p1Num += self.dataMat[i]
p1Denom += sum(self.dataMat[i])
else:
p0Num += self.dataMat[i]
p0Denom += sum(self.dataMat[i])
self.p0Vec = p0Num/p0Denom
self.p1Vec = p1Num/p1Denom
def classify(self, data):
p1 = reduce(lambda x, y: x * y, data * self.p1Vec) * self.pLabel1
p0 = reduce(lambda x, y: x * y, data * self.p0Vec) * (1.0 - self.pLabel1)
if p1 > p0:
return 1
else:
return 0
def test(self):
self.loadDataSet('testNB.txt')
self.train()
print(self.classify([1, 2]))
if __name__ == '__main__':
NB = NaiveBayesClassifier()
NB.test()
Matlab
Matlab的标准工具箱提供了对朴素贝叶斯分类器的支持:
trainData = [0 1; -1 0; 2 2; 3 3; -2 -1;-4.5 -4; 2 -1; -1 -3];
group = [1 1 -1 -1 1 1 -1 -1]';
model = fitcnb(trainData, group)
testData = [5 2;3 1;-4 -3];
predict(model, testData)
fitcnb
用来训练模型,predict
用来预测。
朴素贝叶斯分类器及Python实现的更多相关文章
- (数据科学学习手札30)朴素贝叶斯分类器的原理详解&Python与R实现
一.简介 要介绍朴素贝叶斯(naive bayes)分类器,就不得不先介绍贝叶斯决策论的相关理论: 贝叶斯决策论(bayesian decision theory)是概率框架下实施决策的基本方法.对分 ...
- 用scikit-learn实现朴素贝叶斯分类器 转
原文:http://segmentfault.com/a/1190000002472791 朴素贝叶斯(Naive Bayes Classifier)是一种「天真」的算法(假定所有特征发生概率是独立的 ...
- 朴素贝叶斯分类器(Naive Bayes)
1. 贝叶斯定理 如果有两个事件,事件A和事件B.已知事件A发生的概率为p(A),事件B发生的概率为P(B),事件A发生的前提下.事件B发生的概率为p(B|A),事件B发生的前提下.事件A发生的概率为 ...
- 朴素贝叶斯分类器基本代码 && n折交叉优化
自己也是刚刚入门.. 没脸把自己的代码放上去,先用别人的. 加上自己的解析,挺全面的,希望有用. import re import pandas as pd import numpy as np fr ...
- 数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes
贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类.眼下研究较多的贝叶斯分类器主要有四种, ...
- 十大经典数据挖掘算法(9) 朴素贝叶斯分类器 Naive Bayes
贝叶斯分类器 贝叶斯分类分类原则是一个对象的通过先验概率.贝叶斯后验概率公式后计算,也就是说,该对象属于一类的概率.选择具有最大后验概率的类作为对象的类属.现在更多的研究贝叶斯分类器,有四个,每间:N ...
- 机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)
朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/6014 ...
- 朴素贝叶斯分类器的应用 Naive Bayes classifier
一.病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难. 某个医院早上收了六个门诊病人,如下表. 症状 职业 疾病 打喷嚏 护士 感冒 打喷嚏 农夫 过敏 头痛 建筑工 ...
- PGM学习之三 朴素贝叶斯分类器(Naive Bayes Classifier)
介绍朴素贝叶斯分类器的文章已经很多了.本文的目的是通过基本概念和微小实例的复述,巩固对于朴素贝叶斯分类器的理解. 一 朴素贝叶斯分类器基础回顾 朴素贝叶斯分类器基于贝叶斯定义,特别适用于输入数据维数较 ...
随机推荐
- kbmmw 做REST 服务签名认证的一种方式
一般对外提供提供REST 服务,由于信息安全的问题, 都要采用签名认证,今天简单说一下在KBMMW 中如何 实现简单的签名服务? 整个签名服务,模仿阿里大鱼的认证方式,大家可以根据实际情况自己修改. ...
- Anton 上课题
Anton 上课题 Anton likes to play chess. Also he likes to do programming. No wonder that he decided to a ...
- 多态&虚函数
(1).对象类型: a.静态类型:对象声明时的类型,编译的时候确定 b.动态类型:对象的类型是运行时才能确定的 class A {}; class B:pub ...
- 6.装配Bean基于注解
1.注解:就是一个类,使用@注解名称 开发中:使用注解 取代 xml配置文件. @Component取代<bean class=""> @Component(" ...
- HAProxy出现"远程主机强迫关闭了一个现有的连接 " 的错误及解决
使用haproxy作为sql server 的负载均衡器. 使用了文档中的示例配置项: timeout client 50s timeout server 50s 采用这个配置项,有时会 ...
- 从navicat中导入sql文件过大:Got a packet bigger than 'max_allowed_packet' bytes
失败背景:刚才通过navicat向本地mysql数据库中导入sql文件.第一个sql文件(多个表)大小为967M,导入成功: 第二个sql(单个表)大小为50.1M,导入失败. 1.在navicat中 ...
- 完善版封装canvas分享组件
import regeneratorRuntime from "../../../lib/regenerator-runtime/runtime"; let ctx = false ...
- setAttribute的浏览器兼容性(转)
1.element要用getElementById or ByTagName来得到, 2.setAttribute("class", vName)中class是指改变"c ...
- jQuery应用实例1:定时弹出图片
以前用JS实现的:http://www.cnblogs.com/xuyiqing/p/8373064.html 这里利用jQuery实现,并且做得更完善: <!DOCTYPE html> ...
- Liferay的一些应用领域
Liferay的用途是快速的部署内外站点,统一权限管理,开发Web热插拔插件,并不是所有系统都适合 不适合Liferay的一些应用领域: 1.独立认证.简单的系统,比如一些简单的增删改查:2.复杂业务 ...