抽屉原理:   

形式一:设把n+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an分别表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于2。
 
形式二:设把nm+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于m+1。
 
形式三:设把n个元素分为k个集合A1,A2,…,Ak,用a1,a2,…,ak表示这k个集合里相应的元素个数,需要证明至少存在某个ai大于或等于[n/k]。
  
题意:n个不同的元素,任意一个或者多个相加为n的倍数。找到这些元素。第一个输出元素的个数,后面分别输出这些元素。(多种情况输出一组)
 
  分析:被n求模的余数为 0,1,2,3....n-1    有n个元素,任意几个数的和为n的倍数,那么这些和假设为 a1, a2 ,a3 ..... am 那么m一定大于n  
     把余数当做抽屉,一定会有至少一个抽屉有两个元素!就是抽屉原理的形式一。
 
#include<cstdio>
#include<cstring> const int maxn = 1e5 + ;
int num[maxn], hash[maxn], sum[maxn];
int n; int main()
{
while (scanf("%d", &n) != EOF){
memset(hash, , sizeof(hash));
for (int i = ; i <= n; ++i)
scanf("%d", &num[i]); int t = , s = ;
for (int i = ; i <= n; ++i)
{
sum[i] = (sum[i - ] + num[i]) % n;
if (sum[i] == ){
t = i;
break;
}
if (hash[sum[i]] > ){
s = hash[sum[i]] + ;
t = i;
break;
}
hash[sum[i]] = i;
}
printf("%d\n", t - s + );
for (int i = s; i <= t; ++i)
printf("%d\n", num[i]);
}
}

Find a multiple POJ - 2356 (抽屉原理)的更多相关文章

  1. poj 2356 抽屉原理

    基本原理: n+1个鸽子放到n个笼子里,至少有一个笼子里有两只及其以上的鸽子.若有n个笼子,kn+1个鸽子,至少有一个笼子里面有k+1个鸽子: 题意:给定N个数,挑出一些数,他们和和是n的整数倍: 分 ...

  2. Find a multiple POJ - 2356 【鸽巢原理应用】

    Problem DescriptionThe input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). E ...

  3. Find a multiple POJ - 2356 容斥原理(鸠巢原理)

    1 /* 2 这道题用到了鸠巢原理又名容斥原理,我的参考链接:https://blog.csdn.net/guoyangfan_/article/details/102559097 3 4 题意: 5 ...

  4. Find a multiple POJ - 2356

    The input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). Each of that numbers ...

  5. Mathematics:Find a multiple(POJ 2356)

    找组合 题目大意:给你N个自然数,请你求出若干个数的组合的和为N的整数倍的数 经典鸽巢原理题目,鸽巢原理的意思是,有N个物品,放在N-1个集合中,则一定存在一个集合有2个元素或以上. 这一题是说有找出 ...

  6. poj 2356鸽笼原理水题

    关于鸽笼原理的知识看我写的另一篇博客 http://blog.csdn.net/u011026968/article/details/11564841 (需要说明的是,我写的代码在有答案时就输出结果了 ...

  7. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  8. POJ 2356 Find a multiple 抽屉原理

    从POJ 2356来体会抽屉原理的妙用= =! 题意: 给你一个n,然后给你n个数,让你输出一个数或者多个数,让这些数的和能够组成n: 先输出一个数,代表有多少个数的和,然后再输出这些数: 题解: 首 ...

  9. poj 2356 (抽屉原理)

    题目链接:http://poj.org/problem?id=2356 题目大意:给你n个数,要你从n个数选出若干个数,要求这若干个数的和是n的倍数,输出选择数的个数,以及相应的数. 解题思路: 以下 ...

随机推荐

  1. 【学习笔记】JS经典异步操作,从闭包到async/await

    参考文献:王仕军——知乎专栏前端周刊 感谢作者的热心总结,本文在理解的基础上,根据自己能力水平作了一点小小的修改,在加深自己印象的同时也希望能和各位共同进步... 1. 异步与for循环 抛出一个问题 ...

  2. [转]angular2之@Output() EventEmitter

    本文转自:https://www.jianshu.com/p/f2768f927c86 A src/app/components/contains/contain1.ts import { Compo ...

  3. Java基础——Oracle(五)

    一.Oracle  中的分页 1) select * from emp; 2)select * ,rownum from emp; //这样写不行 3)select ename,job,sal,row ...

  4. JavaScript--fullPage.js插件

    GitHub:https://github.com/alvarotrigo/fullPage.js FullPage.js是一个基于JQuery的插件,可以很方便的制作出全屏网站; 一 特点: 1.支 ...

  5. blfs(systemv版本)学习笔记-安装、配置和使用wpa_supplicant无线网络连接工具

    我的邮箱地址:zytrenren@163.com欢迎大家交流学习纠错! wireless项目地址:http://www.linuxfromscratch.org/blfs/view/8.3/basic ...

  6. Python 模块管理

    导入新的模块 创建一个 calculate.py 文件 print('ok') def add(x,y): return x + y def sub(x,y): return x - y 再创建一个 ...

  7. vue-cli脚手架之webpack.test.conf.js

    webpack单元测试配置: // This is the webpack config used for unit tests. var utils = require('./utils')//ut ...

  8. Android jni c/c++线程通过CallVoidMethod调用java函数出现奔溃问题

    最近在移植网络摄像机里的p2p库到android平台,需要用到jni,最近在c线程了调用java函数的时候 出现一个问题,假如在同一个线程调用java函数是没问题的,但在一个c线程了调用java函数就 ...

  9. 安卓开发之Room实体定义数据

    使用Room实体定义数据 在Room库中,entities(实体)代表着相关字段集.每一个entity(实体)代表着相关联数据库中的一个表.entity 类必须通过Database 类中的entiti ...

  10. Expo大作战(三十七)--expo sdk api之 GLView,GestureHandler,Font,Fingerprint,DeviceMotion,Brightness

    简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,讲全部来与官网 我猜去全部机翻+个人 ...