[笔记]后缀数组SA
参考资料
这次是真抄的:
1.后缀数组详解
2.后缀数组-学习笔记
3.后缀数组——处理字符串的有力工具
定义
\(SA\)排名为\(i\)的后缀的位置
\(rk\)位置为\(i\)的后缀的排名
\(tp\)第二关键字的排名为\(i\)的后缀的位置,还被用作\(rank\)的暂存
\(tax\)每个排名对应的后缀数量
后缀数组就是为了求出\(sa\)和\(rk\)
性质
\(rk[sa[i]]=i\) \(sa[rk[i]]=i\)
$LCP(x,y) $:字符串x与字符串y的最长公共前缀,在这里指x号后缀与与y号后缀的最长公共前缀
\(height[i]=lcp ( sa[i],sa[i - 1] )\),即排名为\(i\)的后缀与排名为\(i−1\)的后缀的最长公共前缀
\(H[i]:height[rak[i]]\),即\(i\)号后缀与它前一名的后缀的最长公共前缀
\(H[i] \geqslant H[i - 1] - 1\) 证明
$LCP(i,j)=LCP(j,i) $
\(LCP(i,i)=len(sa[i])=n-sa[i]+1\)
\(LCP(i,k)=min\left\{height[j] \right\}(i+1<=j<=k)\)
\(S\)不同的子串个数\(\dfrac{n(n+1)}{2} -\sum_{i=1}^nheight[i]\)
代码
#include <iostream>
#include <cstdio>
#include <string>
#define R register int
using namespace std;
const int N = 1000005;
string s;
/* sa[i]:排名为i的后缀的位置
rak[i]:从第i个位置开始的后缀的排名,下文为了叙述方便,把从第i个位置开始的后缀简称为后缀i
tp[i]:基数排序的第二关键字,意义与sa一样,即第二关键字排名为i的后缀的位置
tax[i]:i号元素出现了多少次。辅助基数排序
s:字符串,s[i]表示字符串中第i个字符串*/
int n, m, sa[N], rk[N], tp[N], c[N];
void _sort() {
for(R i = 1; i <= m; ++i) c[i] = 0;
for(R i = 1; i <= n; ++i) c[rk[i]]++;
for(R i = 1; i <= m; ++i) c[i] += c[i - 1];
for(R i = n; i >= 1; --i) sa[c[rk[tp[i]]]--] = tp[i];
}
void SA() {
m = 150;
for(R i = 1; i <= n; ++i) rk[i] = s[i - 1], tp[i] = i;
_sort();
for(R w = 1, p = 0; p < n && w <= n; m = p, w <<= 1) {
p = 0;
for(R i = 1; i <= w; ++i) tp[++p] = n - w + i;
for(R i = 1; i <= n; ++i) if(sa[i] > w) tp[++p] = sa[i] - w;
_sort();
swap(tp, rk);
rk[sa[1]] = p = 1;
for(R i = 2; i <= n; ++i)
rk[sa[i]] = (tp[sa[i - 1]] == tp[sa[i]] && tp[sa[i - 1] + w] == tp[sa[i] + w])
? p : ++p;
}
}
/*i号后缀:从i开始的后缀
lcp(x,y):字符串x与字符串y的最长公共前缀,在这里指x号后缀与与y号后缀的最长公共前缀
height[i]:lcp(sa[i],sa[i?1]),即排名为i的后缀与排名为i?1的后缀的最长公共前缀
H[i]:height[rak[i]],即i号后缀与它前一名的后缀的最长公共前缀*/
int Height[N];
void Get() {
int j, k = 0;
for(int i = 1; i <= n; i++) {
if(k) k--;
j = sa[rk[i] - 1];
while(s[i + k - 1] == s[j + k - 1]) ++k;
Height[rk[i]] = k;
}
}
int main()
{
cin >> s;
n = s.length();
SA();
for(R i = 1; i <= n; ++i) printf("%d ", sa[i]);
cout << endl;
Get();
return 0;
}
Problem
\(ans=\dfrac{n(n+1)}{2} -\sum height[i]\)
Luogu
P3809 【模板】后缀排序
P4070 [SDOI2016]生成魔咒
P3311 [SDOI2014]数数
P4051 [JSOI2007]字符加密
P2463 [SDOI2008]Sandy的卡片
P2408 不同子串个数
[笔记]后缀数组SA的更多相关文章
- 后缀数组SA学习笔记
什么是后缀数组 后缀数组\(sa[i]\)表示字符串中字典序排名为\(i\)的后缀位置 \(rk[i]\)表示字符串中第\(i\)个后缀的字典序排名 举个例子: ababa a b a b a rk: ...
- 后缀数组(SA)总结
后缀数组(SA)总结 这个东西鸽了好久了,今天补一下 概念 后缀数组\(SA\)是什么东西? 它是记录一个字符串每个后缀的字典序的数组 \(sa[i]\):表示排名为\(i\)的后缀是哪一个. \(r ...
- 后缀数组SA入门(史上最晦涩难懂的讲解)
参考资料:victorique的博客(有一点锅无伤大雅,记得看评论区),$wzz$ 课件(快去$ftp$%%%),$oi-wiki$以及某个人的帮助(万分感谢!) 首先还是要说一句:我不知道为什么我这 ...
- bzoj3796(后缀数组)(SA四连)
bzoj3796Mushroom追妹纸 题目描述 Mushroom最近看上了一个漂亮妹纸.他选择一种非常经典的手段来表达自己的心意——写情书.考虑到自己的表达能力,Mushroom决定不手写情书.他从 ...
- 【字符串】后缀数组SA
后缀数组 概念 实际上就是将一个字符串的所有后缀按照字典序排序 得到了两个数组 \(sa[i]\) 和 \(rk[i]\),其中 \(sa[i]\) 表示排名为 i 的后缀,\(rk[i]\) 表示后 ...
- 浅谈后缀数组SA
这篇博客不打算讲多么详细,网上关于后缀数组的blog比我讲的好多了,这一篇博客我是为自己加深印象写的. 给你们分享了那么多,容我自私一回吧~ 参考资料:这位dalao的blog 一.关于求Suffix ...
- 后缀数组SA
复杂度:O(nlogn) 注:从0到n-1 const int maxn=1e5; char s[maxn]; int sa[maxn],Rank[maxn],height[maxn],rmq[max ...
- 洛谷2408不同字串个数/SPOJ 694/705 (后缀数组SA)
真是一个三倍经验好题啊. 我们来观察这个题目,首先如果直接整体计算,怕是不太好计算. 首先,我们可以将每个子串都看成一个后缀的的前缀.那我们就可以考虑一个一个后缀来计算了. 为了方便起见,我们选择按照 ...
- 洛谷4248 AHOI2013差异 (后缀数组SA+单调栈)
补博客! 首先我们观察题目中给的那个求\(ans\)的方法,其实前两项没什么用处,直接\(for\)一遍就求得了 for (int i=1;i<=n;i++) ans=ans+i*(n-1); ...
随机推荐
- #13 让代码变得Pythonic
前言 在学习Python的过程中,肯定听说过这么一个词:Pythonic,它的意思是让你的代码很Python! 一.列表生成式 前面有一节专门讲解了Python的列表,其灵活的使用方法一定让你陶醉其中 ...
- 在JS中统计函数执行次数与执行时间
假如想统计JS中的函数执行次数最多的是哪个,执行时间最长的是哪个,该怎么做呢? 1. 统计函数执行次数 2. 统计函数执行时间 3. 如何控制函数的调用次数 4. 如何控制函数的执行时间 一.统计函数 ...
- Python 判断文件/目录是否存在
使用 os 模块 判断文件是否存在 os.path.isfile(path) 判断目录是否存在 os.path.isdir(path) 判断路径是否存在 # 使用 path 模块 os.path.ex ...
- Java基础——JSON
一.JSON定义 在百度百科中的解释:JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.它基于JavaScript的一个子集. JSON采用完全独立于语言的 ...
- 【协议】2、TCP/IP协议三次握手与四次握手流程解析
一.TCP报文格式 TCP/IP协议的详细信息参看<TCP/IP协议详解>三卷本.下面是TCP报文格式图:图1 TCP报文格式 上图中有几个字段需要重点介绍下: (1)序号:Seq序 ...
- domOperation.js
// 可视宽高var ch = document.documentElement.clientHeightvar cw = document.documentElement.clientWidth / ...
- python之线程相关操作
1.线程: 一个进程可以有多个线程,共享一个进程的资源: 2.进程线程的区别: 进程是资源分配的最小单位,线程是程序执行的最小单位 3.python中线程模块threading, 提供的类: Thr ...
- docker 安装 gitlab
基于Docker部署GitLab环境搭建 建议虚拟机内存2G以上 1.下载镜像文件 docker pull beginor/gitlab-ce:11.0.1-ce.0 注意:一定要配置阿里云的加速镜像 ...
- CSS&JS两种方式实现手风琴式折叠菜单
<div class="accordion"> <div id="one" class="section"> < ...
- 基础篇|一文搞懂RNN(循环神经网络)
基础篇|一文搞懂RNN(循环神经网络) https://mp.weixin.qq.com/s/va1gmavl2ZESgnM7biORQg 神经网络基础 神经网络可以当做是能够拟合任意函数的黑盒子,只 ...