斯坦福大学公开课机器学习:监督学习在行人检测的应用(supervised learning for pedestrian detection)
对于下图,左边是行人,作为阳性例子,赋值y=1,右边是景物,作为阴性例子,赋值y=0;
步长概念:
如下图所示,步长表示绿色框框移动的距离,有时候也称为滑动参数stride,如果一次移动一个像素,则称步长为1,通常步长为1时,表现最好,但是计算成本高,一般,选用4或8个步长更为常见。
通过绿色框框进行移动,然后运行分类器,对图块(image patches)进行分类,直到最后。随着你在图片的不同位置,滑动这个矩形框,首先从第一行,然后滑到下一行,使用不同的步长对这些不同的图块应用某个步长,通过分类器进行分类。接下来用更大的图块,也通过分类器运行,一般就能检测行人。这是一个如何训练一个分类器的过程,然后,使用滑动窗口分类,或使用一个滑动窗口检测器,去寻找图像中的行人。
斯坦福大学公开课机器学习:监督学习在行人检测的应用(supervised learning for pedestrian detection)的更多相关文章
- 斯坦福大学公开课机器学习:advice for applying machine learning | diagnosing bias vs. variance(机器学习:诊断偏差和方差问题)
当我们运行一个学习算法时,如果这个算法的表现不理想,那么有两种原因导致:要么偏差比较大.要么方差比较大.换句话说,要么是欠拟合.要么是过拟合.那么这两种情况,哪个和偏差有关.哪个和方差有关,或者是不是 ...
- 第19月第8天 斯坦福大学公开课机器学习 (吴恩达 Andrew Ng)
1.斯坦福大学公开课机器学习 (吴恩达 Andrew Ng) http://open.163.com/special/opencourse/machinelearning.html 笔记 http:/ ...
- 斯坦福大学公开课机器学习: machine learning system design | error analysis(误差分析:检验算法是否有高偏差和高方差)
误差分析可以更系统地做出决定.如果你准备研究机器学习的东西或者构造机器学习应用程序,最好的实践方法不是建立一个非常复杂的系统.拥有多么复杂的变量,而是构建一个简单的算法.这样你可以很快地实现它.研究机 ...
- 斯坦福大学公开课机器学习: machine learning system design | prioritizing what to work on : spam classification example(设计复杂机器学习系统的主要问题及构建复杂的机器学习系统的建议)
当我们在进行机器学习时着重要考虑什么问题.以垃圾邮件分类为例子.假如你想建立一个垃圾邮件分类器,看这些垃圾邮件与非垃圾邮件的例子.左边这封邮件想向你推销东西.注意这封垃圾邮件有意的拼错一些单词,就像M ...
- 斯坦福大学公开课机器学习:machine learning system design | error metrics for skewed classes(偏斜类问题的定义以及针对偏斜类问题的评估度量值:查准率(precision)和召回率(recall))
上篇文章提到了误差分析以及设定误差度量值的重要性.那就是设定某个实数来评估学习算法并衡量它的表现.有了算法的评估和误差度量值,有一件重要的事情要注意,就是使用一个合适的误差度量值,有时会对学习算法造成 ...
- 斯坦福大学公开课机器学习:advice for applying machine learning | model selection and training/validation/test sets(模型选择以及训练集、交叉验证集和测试集的概念)
怎样选用正确的特征构造学习算法或者如何选择学习算法中的正则化参数lambda?这些问题我们称之为模型选择问题. 在对于这一问题的讨论中,我们不仅将数据分为:训练集和测试集,而是将数据分为三个数据组:也 ...
- 斯坦福大学公开课机器学习:advice for applying machine learning - deciding what to try next(设计机器学习系统时,怎样确定最适合、最正确的方法)
假如我们在开发一个机器学习系统,想试着改进一个机器学习系统的性能,我们应该如何决定接下来应该选择哪条道路? 为了解释这一问题,以预测房价的学习例子.假如我们已经得到学习参数以后,要将我们的假设函数放到 ...
- 斯坦福大学公开课机器学习:Neural network-model representation(神经网络模型及神经单元的理解)
神经网络是在模仿大脑中的神经元或者神经网络时发明的.因此,要解释如何表示模型假设,我们先来看单个神经元在大脑中是什么样的.如下图,我们的大脑中充满了神经元,神经元是大脑中的细胞,其中有两点值得我们注意 ...
- 斯坦福大学公开课机器学习:Neural Networks,representation: non-linear hypotheses(为什么需要做非线性分类器)
如上图所示,如果用逻辑回归来解决这个问题,首先需要构造一个包含很多非线性项的逻辑回归函数g(x).这里g仍是s型函数(即 ).我们能让函数包含很多像这的多项式,当多项式足够多时,那么你也许能够得到可以 ...
随机推荐
- Nginx反向代理的简单实现
1)nginx的反向代理:proxy_pass2)nginx的负载均衡:upstream 下面是nginx的反向代理和负载均衡的实例: 负载机:A机器:103.110.186.8/192.168.1. ...
- D. Cutting Out
---恢复内容开始--- 链接 [https://codeforces.com/contest/1077/problem/D] 题意 给你n,k,n个数,找出长度为k,的子串(不需连续),使得该子串数 ...
- STL next_permutation()
用法 字典序全排列 可以发现函数next_permutation()是按照字典序产生排列的,并且是从数组中当前的字典序开始依次增大直至到最大字典序. 代码 #include<iostream&g ...
- 第三次作业 (一)----------------------Visual Studio 2015的安装及单元测试
这是第三周的第一个作业,Visual Studio 2015的安装及单元测试. 我的电脑之前安装过Visual Studio 2015,但是在安装过程中我从来没有留意过各种注意事项,所集正好借此作业的 ...
- html转js字符串拼接
https://www.bejson.com/convert/html_js/ html转js字符串拼接
- 【CV】ICCV2015_Learning Temporal Embeddings for Complex Video Analysis
Learning Temporal Embeddings for Complex Video Analysis Note here: it's a review note on novel work ...
- 发布阶段 github和360移动助手及总结
经过一系列的冲刺和加工 最激动人心的无非在发布平台上公布上自己辛苦奋斗了一个周期的产品,这个时候的我们就像Iphone 6发布会上得CEO,为自己的产品完美画上了研发的句号. 接下来的日子就是准备ve ...
- Online Resource Mapping for SDN Network Hypervisors using Machine Learning
发表时间:2016 一些定义: self-configuring networks: FlowVisor: FlowVisor是建立在OpenFlow之上的网络虚拟化工具,它可以将物理网络划分成多个逻 ...
- 第八章Jdk代理 cglib代理
什么是代理模式 代理(Proxy)是一种设计模式,提供了对目标对象另外的访问方式;即通过代理对象访问目标对象.这样做的好处是:可以在目标对象实现的基础上,增强额外的功能操作,即扩展目标对象的功能. 这 ...
- [转帖]Linux内核为大规模支持100Gb/s网卡准备好了吗?并没有
Linux内核为大规模支持100Gb/s网卡准备好了吗?并没有 之前用 千兆的机器 下载速度 一般只能到 50MB 左右 没法更高 万兆的话 可能也就是 200MB左右的速度 很难更高 不知道后续的服 ...