Minimum Cost POJ - 2516 (模板题 spfa最小费用最大流)
题意:
人回家,一步一块钱,有x个人,y个房子,求能回家的最大人数且使之费用最小
解析:
就是。。。。套模板,,,,
建图(⊙﹏⊙)。。。要仔细观察呐
对于人拆不拆都可以 都能过,,,,这里贴上拆开的代码。。。。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int maxn = , INF = 0x7fffffff;
typedef long long LL; int head[maxn], d[maxn], cur[maxn], vis[maxn], p[maxn], f[maxn];
int n, m, s, t;
int cnt, flow, value; struct edge{
int x, y;
}; struct node{
int u, v, c, w, next;
}Node[maxn*]; void add_(int u, int v, int c, int w)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].c = c;
Node[cnt].w = w;
Node[cnt].next = head[u];
head[u] = cnt++;
} void add(int u, int v, int c, int w)
{
add_(u, v, c, w);
add_(v, u, , -w);
} int spfa()
{
queue<int> Q;
for(int i=; i<maxn; i++) d[i] = INF;
d[s] = ;
mem(vis, );
mem(p, -);
Q.push(s);
vis[s] = ;
p[s] = ; f[s] = INF;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
vis[u] = ;
for(int i=head[u]; i!=-; i=Node[i].next)
{
node e = Node[i];
if(d[e.v] > d[e.u] + e.w && e.c > )
{
d[e.v] = d[e.u] + e.w;
p[e.v] = i;
f[e.v] = min(f[u], e.c);
if(!vis[e.v])
{
Q.push(e.v);
vis[e.v] = ;
}
}
}
}
if(p[t] == -) return ;
flow += f[t], value += d[t];
for(int i=t; i!=s; i=Node[p[i]].u)
{
Node[p[i]].c -= f[t];
Node[p[i]^].c += f[t];
}
return ;
} void max_flow()
{
while(spfa());
printf("%d\n",value);
} int main()
{
while(~scanf("%d%d",&n,&m) && n+m)
{
s = ; t = *n*m+;
edge hou[maxn], men[maxn];
flow = ; value = ;
cnt = ;
mem(head, -);
char str[][];
int cnt1 = , cnt2 = ;
for(int i=; i<n; i++)
{
scanf("%s",str[i]);
for(int j=; j<m; j++)
{
if(str[i][j] == 'H')
{
hou[cnt1].x = i;
hou[cnt1].y = j;
add(cnt1, t, , );
cnt1++;
}
if(str[i][j] == 'm')
{
men[cnt2].x = i;
men[cnt2].y = j;
add(n*m+cnt2, *n*m + cnt2, , );
add(s, n*m+cnt2, , );
cnt2++;
}
}
}
for(int i=; i<cnt2; i++)
for(int j=; j<cnt1; j++)
{
add(*n*m+i, j, , abs(men[i].x - hou[j].x) + abs(men[i].y - hou[j].y));
} max_flow(); }
return ;
}
Minimum Cost POJ - 2516 (模板题 spfa最小费用最大流)的更多相关文章
- Minimum Cost 【POJ - 2516】【网络流最小费用最大流】
题目链接 题意: 有N个商家它们需要货物源,还有M个货物供应商,N个商家需要K种物品,每种物品都有对应的需求量,M个商家每种物品都是对应的存货,然后再是K个N*M的矩阵表示了K个物品从供货商运送到商家 ...
- Minimum Cost POJ - 2516(模板题。。没啥好说的。。)
题意: 从发货地到商家 送货 求送货花费的最小费用... 有m个发货地,,,n个商家,,每个商家所需要的物品和物品的个数都不一样,,,每个发货地有的物品和物品的个数也不一样,,, 从不同的发货地到不同 ...
- kuangbin专题专题十一 网络流 Minimum Cost POJ - 2516
题目链接:https://vjudge.net/problem/POJ-2516 思路:对于每种商品跑最小费用最大流,如果所有商品和人一起建图跑,O(v^2*m)数量级太大,会超时. 把店里的商品拆点 ...
- POJ 2135 Farm Tour (最小费用最大流模板)
题目大意: 给你一个n个农场,有m条道路,起点是1号农场,终点是n号农场,现在要求从1走到n,再从n走到1,要求不走重复路径,求最短路径长度. 算法讨论: 最小费用最大流.我们可以这样建模:既然要求不 ...
- POJ 2195 Going Home 【最小费用最大流】
题目链接:http://poj.org/problem?id=2195 Time Limit: 1000MS Memory Limit: 65536K Total Submissions:2715 ...
- POJ 2195 Going Home(最小费用最大流)
http://poj.org/problem?id=2195 题意 : N*M的点阵中,有N个人,N个房子.让x个人走到这x个房子中,只能上下左右走,每个人每走一步就花1美元,问当所有的人都归位了之 ...
- POJ 2135 Farm Tour(最小费用最大流)
Description When FJ's friends visit him on the farm, he likes to show them around. His farm comprise ...
- 【COGS 461】[网络流24题] 餐巾 最小费用最大流
既然是最小费用最大流我们就用最大流来限制其一定能把每天跑满,那么把每个表示天的点向T连流量为其所需餐巾,费用为0的边,然后又与每天的餐巾对于买是无限制的因此从S向每个表示天的点连流量为INF,费用为一 ...
- POJ 2135 Farm Tour(最小费用最大流,变形)
题意:给一个无向图,FJ要从1号点出发到达n号点,再返回到1号点,但是路一旦走过了就会销毁(即回去不能经过),每条路长度不同,那么完成这趟旅行要走多长的路?(注:会有重边,点号无序,无向图!) 思路: ...
随机推荐
- linux调度器源码分析 - 新进程加入(三)
本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 引言 之前的文章已经介绍了调度器已经初始化完成,现在只需要加入一个周期定时器tick驱动它进行周期调度即可,而加 ...
- 解读tensorflow之rnn
from: http://lan2720.github.io/2016/07/16/%E8%A7%A3%E8%AF%BBtensorflow%E4%B9%8Brnn/ 这两天想搞清楚用tensorfl ...
- 千兆以太网TCP协议的FPGA实现
转自https://blog.csdn.net/zhipao6108/article/details/82386355 千兆以太网TCP协议的FPGA实现 Lzx 2017/4/20 写在前面,这应该 ...
- 【Java并发.1】简介
继上一本<深入理解Java虚拟机>之后,学习计划里的另一本书<Java并发编程实战>现在开始学习,并记录学习笔记. 第一章主要内容是介绍 并发 的简介.发展.特点. 编写正确的 ...
- 【nodejs】让nodejs像后端mvc框架(asp.net mvc )一样处理请求--路由限制及选择篇(2/8)【route】
文章目录 前情概要 上文中的RouteHandler中有一个重要方法GetActionDescriptor没有贴代码和说,接下来我们就说一说这个方法. 使用controllerName.actionN ...
- Unity Jobsystem 详解实体组件系统ECS
原文摘选自Unity Jobsystem 详解实体组件系统ECS 简介 随着ECS的加入,Unity基本上改变了软件开发方面的大部分方法.ECS的加入预示着OOP方法的结束.随着实体组件系统ECS的到 ...
- Nginx中防盗链(下载防盗链和图片防盗链)及图片访问地址操作记录
日常运维工作中,设置防盗链的需求会经常碰到,这也是优化网站的一个必要措施.今天在此介绍Nginx中设置下载防盗链和图片防盗链的操作~ 一.Nginx中下载防盗链的操作记录对于一些站点上的下载操作,有很 ...
- keepalived概述
一.HA集群中的相关术语 1.节点(node) 运行HA进程的一个独立主机,称为节点,节点是HA的核心组成部分,每个节点上运行着操作系统和高可用软件服务,在高可用集群中,节点有主次之分,分别称之为主节 ...
- SpringCloud设定Feign底层实现
1. 概述 版本: spring-boot: 1.5.9.RELEASE spring-cloud: Dalston.SR5 在默认情况下 spring cloud feign在进行各个子服务之间的 ...
- Week 2 代码规范
Question 1: 这些规范都是官僚制度下产生的浪费大家的编程时间.影响人们开发效率, 浪费时间的东西. My opinion: 我认为恰恰相反,这个可以提高人们的开发效率. 在团队合作当中,如果 ...