MT【210】四点共圆+角平分线
(2018全国联赛解答最后一题)在平面直角坐标系$xOy$中,设$AB$是抛物线$y^2=4x$的过点$F(1,0)$的弦,$\Delta{AOB}$的外接圆交抛物线于点$P$(不同于点$A,O,B$),若$PF$平分$\angle{APB}$,求$|PF|$所有可能值。
解答:不妨设$AO:y=kx(k>0)$,联立方程$y=kx,y^2=4x$得$A(\dfrac{4}{k^2},\dfrac{4}{k})$
$AB:y=\dfrac{\frac{4}{k}}{\frac{4}{k^2}-1}(x-1);$联立方程:$y=\dfrac{\frac{4}{k}}{\frac{4}{k^2}-1}(x-1),y^2=4x$
得$ky^2+(k^2-4)y-4k=0$得$y_B=-k,\therefore B(\dfrac{k^2}{4},-k)$
由于OBAP四点共圆,故$k_{BP}=-k$(注:此性质见MT【125】)即:$\dfrac{y_p+k}{x_P-\frac{k^2}{4}}=\dfrac{y_p+k}{\frac{y_P}{4}-\frac{k^2}{4}}=-k$
得$P(\dfrac{(k^2-4)^2}{4k^2},\dfrac{k^2-4}{k})$,
由题意$PF$平分$\angle{APB}$故$\dfrac{AP}{BP}=\dfrac{AF}{BF}=\dfrac{y_A}{y_B}$代入坐标
得$$\dfrac{\left(\dfrac{(k^2-4)^2}{4k^2}-\dfrac{4}{k^2}\right)^2+\left(\dfrac{k^2-4}{k}-\dfrac{4}{k}\right)^2}{\left(\dfrac{(k^2-4)^2}{4k^2}-\dfrac{k^2}{4}\right)^2+\left(\dfrac{k^2-4}{k}+k\right)^2}=\left(\dfrac{\frac{4}{k}}{-k}\right)^2$$
记$t=k^2>0$化简得:$t^3(t-8)^2(16+t)=32^2(t-2)^2(t+1)$即$(t-4)(t+4)(t^2-12t-16)(t^2+12t-16)=0$,故$t_1=4,t_2=2(\sqrt{13}-3)$,
当$t=4$时$P(0,0)$舍去
当$t=2(\sqrt{13}-3)$时,$|PF|=x_P+1=\sqrt{13}-1$
MT【210】四点共圆+角平分线的更多相关文章
- MT【125】四点共圆
(2017湖南省高中数学竞赛16题) \(AB\)是椭圆\(mx^2+ny^2=1(m>0,n>0,m\ne n)\)的斜率为 1 的弦.\(AB\)的垂直平分线与椭圆交于两点\(CD\) ...
- MT【306】圆与椭圆公切线段
已知椭圆方程$\dfrac{x^2}{4}+\dfrac{y^2}{3}=1$,圆方程$x^2+y^2=r^2,(3<r^2<4)$,若直线$l$与椭圆和圆分别切于点$P,Q$求$|PQ| ...
- Pick定理、欧拉公式和圆的反演
Pick定理.欧拉公式和圆的反演 Tags:高级算法 Pick定理 内容 定点都是整点的多边形,内部整点数为\(innod\),边界整点数\(ednod\),\(S=innod+\frac{ednod ...
- hihoCoder挑战赛14 A,B,C题解
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud 题目1 : 不等式 时间限制:10000ms 单点时限:1000ms 内存限制:2 ...
- poj1981 Circle and Points 单位圆覆盖问题
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Circle and Points Time Limit: 5000MS Me ...
- poj2187 Beauty Contest(旋转卡壳)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Beauty Contest Time Limit: 3000MS Memor ...
- poj1127 Jack Straws(线段相交+并查集)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Jack Straws Time Limit: 1000MS Memory L ...
- [ZJOI2018]保镖
[ZJOI2018]保镖 Tags:题解 题意 链接 初始在平面上有一些点,九条可怜随机出现在一个矩形内的任意一点.若九条可怜出现在\(O\)点,则平面上所有的点都从\(P_i\)移动到\(P'_i\ ...
- 洛谷P4502 [ZJOI2018]保镖(计算几何+三维凸包)
题面 传送门 题解 我对计蒜几盒一无所知 顺便\(xzy\)巨巨好强 前置芝士 三维凸包 啥?你不会三维凸包?快去把板子写了->这里 欧拉公式 \[V-E+F=2\] \(V:vertex\)顶 ...
随机推荐
- java中的SHA单向加密
SHA全名叫做安全散列算法,是FIPS所认证的安全散列算法.能计算出一个数字消息所对应到的,长度固定的字符串(又称消息摘要)的算法.且若输入的消息不同,它们对应到不同字符串的机率很高. package ...
- session和cookie知识点总结
cookie小结:1.cookie是在服务端创建2.cooki是保存在浏览器这一端3.cookie的生命周期可以通过 cookie.setMaxAge(2000);(如果不设置生命周期,cookie的 ...
- 简单的策略模式Strategy演示
策略模式,即规则在变化之中,结果终归为一. 公司给员工计算工资,如有加班费,差旅费,每个月的生活补帖等等其它费用需要计算.这个费的规则是不尽相同. 不管策略的规则怎样,终归需要计算出一个结果 工资: ...
- Luogu P2403 [SDOI2010]所驼门王的宝藏
比较显然的缩点+拓扑排序题,只不过要建虚点优化建边. 首先我们发现在一个SCC里的点都是可以一起对答案产生贡献的,因此先缩成DAG,然后拓扑找最长链. 但是我们发现这题最坏情况下边数会达到恐怖的\(O ...
- FSMC的个人理解
个人理解: FSMC相当于外部设备存储器地址在FSMC对应存储地址中的映射,通过在FSMC的存储地址中写数据,就能通过FSMC的地址线和数据线,将地址和数据写到外部设备存储器地址中.所以,程序中,需要 ...
- 2.RapidIO串行物理层的包与控制符号
转自https://www.cnblogs.com/liujinggang/p/9932150.html 一.RapidIO串行物理层背景介绍 上篇博文提到RapidIO的物理层支持串行物理层与并行物 ...
- postgresql总结
这篇博客主要对PostgreSQL进行总结,内容偏基础. 这里先附上一个PostgreSQL的中文资源:PostgreSQL 8.1 中文文档.英文不好的同学可以看看这个. 安装PostgreSQL ...
- ASP.NET Core使用TopShelf部署Windows服务
asp.net core很大的方便了跨平台的开发者,linux的开发者可以使用apache和nginx来做反向代理,windows上可以用IIS进行反向代理. 反向代理可以提供很多特性,固然很好.但是 ...
- 实验二Java面向对象程序设计_20135129李畅宇
ava第二次实验报告 课程:Java实验 班级:201352 姓名:池彬宁 学号:20135212 成绩: 指导教师:娄佳鹏 实验日期:15.05.05 ...
- 【实践报告】Linux实践三
Linux实践——程序破解 一.掌握NOP.JNE.JE.JMP.CMP汇编指令的机器码 NOP:NOP指令即“空指令”.执行到NOP指令时,CPU什么也不做,仅仅当做一个指令执行过去并继续执行NOP ...