题目大意:给你两个多项式$f(x)$和$g(x)$以及一个模数$p(p\leqslant10^9)$,求$f*g\pmod p$

题解:任意模数$NTT$,最大的数为$p^2\times\max\{n,m\}\leqslant10^{23}$,所以一般选$3$个模数即可,求出这三个模数下的答案,然后中国剩余定理即可。

假设这一位的答案是$x$,三个模数分别为$A,B,C$,那么:

$$
x\equiv x_1\pmod{A}\\
x\equiv x_2\pmod{B}\\
x\equiv x_3\pmod{C}
$$

先把前两个合并:

$$
x_1+k_1A=x_2+k_2B\\
x_1+k_1A\equiv x_2\pmod{B}\\
k_1\equiv \frac{x_2-x_1}A\pmod{B}
$$

于是求出了$k_1$,也就求出了$x\equiv x_1+k_1A\pmod{AB}$,记$x_4=x_1+k_1A$

$$
x_4+k_4AB=x_3+k_3C\\
x_4+k_4AB\equiv x_3\pmod{C}\\
k_4\equiv \dfrac{x_3-x_4}{AB}\pmod{C}
$$

求出了$k_4$,$x\equiv x_4+k_4AB\pmod{ABC}$,因为$x<ABC$,所以$x=x_4+k_4AB$

卡点:$Wn$数组开小,中国剩余定理写错

C++ Code:

#include <algorithm>
#include <cstdio>
#include <cstring>
int mod;
namespace Math {
inline int pw(int base, int p, const int mod) {
static int res;
for (res = 1; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod;
return res;
}
inline int inv(int x, const int mod) { return pw(x, mod - 2, mod); }
} const int mod1 = 998244353, mod2 = 1004535809, mod3 = 469762049, G = 3;
const long long mod_1_2 = static_cast<long long> (mod1) * mod2;
const int inv_1 = Math::inv(mod1, mod2), inv_2 = Math::inv(mod_1_2 % mod3, mod3);
struct Int {
int A, B, C;
explicit inline Int() { }
explicit inline Int(int __num) : A(__num), B(__num), C(__num) { }
explicit inline Int(int __A, int __B, int __C) : A(__A), B(__B), C(__C) { }
static inline Int reduce(const Int &x) {
return Int(x.A + (x.A >> 31 & mod1), x.B + (x.B >> 31 & mod2), x.C + (x.C >> 31 & mod3));
}
inline friend Int operator + (const Int &lhs, const Int &rhs) {
return reduce(Int(lhs.A + rhs.A - mod1, lhs.B + rhs.B - mod2, lhs.C + rhs.C - mod3));
}
inline friend Int operator - (const Int &lhs, const Int &rhs) {
return reduce(Int(lhs.A - rhs.A, lhs.B - rhs.B, lhs.C - rhs.C));
}
inline friend Int operator * (const Int &lhs, const Int &rhs) {
return Int(static_cast<long long> (lhs.A) * rhs.A % mod1, static_cast<long long> (lhs.B) * rhs.B % mod2, static_cast<long long> (lhs.C) * rhs.C % mod3);
}
inline int get() {
long long x = static_cast<long long> (B - A + mod2) % mod2 * inv_1 % mod2 * mod1 + A;
return (static_cast<long long> (C - x % mod3 + mod3) % mod3 * inv_2 % mod3 * (mod_1_2 % mod) % mod + x) % mod;
}
} ; #define maxn 131072 namespace Poly {
#define N (maxn << 1)
int lim, s, rev[N];
Int Wn[N | 1];
inline void init(int n) {
s = -1, lim = 1; while (lim < n) lim <<= 1, ++s;
for (register int i = 1; i < lim; ++i) rev[i] = rev[i >> 1] >> 1 | (i & 1) << s;
const Int t(Math::pw(G, (mod1 - 1) / lim, mod1), Math::pw(G, (mod2 - 1) / lim, mod2), Math::pw(G, (mod3 - 1) / lim, mod3));
*Wn = Int(1); for (register Int *i = Wn; i != Wn + lim; ++i) *(i + 1) = *i * t;
}
inline void NTT(Int *A, const int op = 1) {
for (register int i = 1; i < lim; ++i) if (i < rev[i]) std::swap(A[i], A[rev[i]]);
for (register int mid = 1; mid < lim; mid <<= 1) {
const int t = lim / mid >> 1;
for (register int i = 0; i < lim; i += mid << 1) {
for (register int j = 0; j < mid; ++j) {
const Int W = op ? Wn[t * j] : Wn[lim - t * j];
const Int X = A[i + j], Y = A[i + j + mid] * W;
A[i + j] = X + Y, A[i + j + mid] = X - Y;
}
}
}
if (!op) {
const Int ilim(Math::inv(lim, mod1), Math::inv(lim, mod2), Math::inv(lim, mod3));
for (register Int *i = A; i != A + lim; ++i) *i = (*i) * ilim;
}
}
#undef N
} int n, m;
Int A[maxn << 1], B[maxn << 1];
int main() {
scanf("%d%d%d", &n, &m, &mod); ++n, ++m;
for (int i = 0, x; i < n; ++i) scanf("%d", &x), A[i] = Int(x % mod);
for (int i = 0, x; i < m; ++i) scanf("%d", &x), B[i] = Int(x % mod);
Poly::init(n + m);
Poly::NTT(A), Poly::NTT(B);
for (int i = 0; i < Poly::lim; ++i) A[i] = A[i] * B[i];
Poly::NTT(A, 0);
for (int i = 0; i < n + m - 1; ++i) {
printf("%d", A[i].get());
putchar(i == n + m - 2 ? '\n' : ' ');
}
return 0;
}

  

[洛谷P4245]【模板】任意模数NTT的更多相关文章

  1. 洛谷 P4245 [模板]任意模数NTT —— 三模数NTT / 拆系数FFT(MTT)

    题目:https://www.luogu.org/problemnew/show/P4245 用三模数NTT做,需要注意时间和细节: 注意各种地方要取模!传入 upt() 里面的数一定要不超过2倍 m ...

  2. 洛谷.4245.[模板]任意模数NTT(MTT/三模数NTT)

    题目链接 三模数\(NTT\): 就是多模数\(NTT\)最后\(CRT\)一下...下面两篇讲的都挺明白的. https://blog.csdn.net/kscla/article/details/ ...

  3. [题解] Luogu P4245 [模板]任意模数NTT

    三模NTT 不会... 都0202年了,还有人写三模NTT啊... 讲一个好写点的做法吧: 首先取一个阀值\(w\),然后把多项式的每个系数写成\(aw + c(c < w)\)的形式,换句话说 ...

  4. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  5. 洛谷.4721.[模板]分治FFT(NTT)

    题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...

  6. 洛谷.4512.[模板]多项式除法(NTT)

    题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...

  7. 【模板】任意模数NTT

    题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F ...

  8. 【知识总结】多项式全家桶(三)(任意模数NTT)

    经过两个月的咕咕,"多项式全家桶" 系列终于迎来了第三期--(雾) 上一篇:[知识总结]多项式全家桶(二)(ln和exp) 先膜拜(伏地膜)大恐龙的博客:任意模数 NTT (在页面 ...

  9. MTT:任意模数NTT

    MTT:任意模数NTT 概述 有时我们用FFT处理的数据很大,而模数可以分解为\(a\cdot 2^k+1\)的形式.次数用FFT精度不够,用NTT又找不到足够大的模数,于是MTT就应运而生了. MT ...

随机推荐

  1. Luogu3320 SDOI2015 寻宝游戏 链并

    传送门 可以发现从哪里开始的最优答案都是一样的.我们只需要用一种比较好维护的方法维护答案就好了. 我们考虑用$dfs$序加上$set$维护链并.先预处理$dfs$序,将当前有宝藏的点丢入$set$中, ...

  2. Luogu3514 POI2011 Lollipop 递推、构造

    题目传送门:https://www.luogu.org/problemnew/show/P3514 题意:给出一个只有$1$和$2$的长度为$N$的数列,$M$次询问是否存在一段连续子区间和为$K$. ...

  3. 微信小程序 wx.getUserInfo 解密 C# 代码 - 转

    public static string DecodeUserInfo(string raw, string signature,string encryptedData, string iv) { ...

  4. 【dataX】阿里开源ETL工具——dataX简单上手

    一.概述 1.是什么? DataX 是阿里巴巴集团内被广泛使用的离线数据同步工具/平台,实现包括 MySQL.Oracle.SqlServer.Postgre.HDFS.Hive.ADS.HBase. ...

  5. Ionic Android项目Splash设置

    ionic项目中,在splashscreen消失后会出现零点几秒的白屏,再出现app页面. 1. 安装Cordova splash screen插件 ionic plugin add org.apac ...

  6. 异步编程(async&await)

    前言 本来这篇文章上个月就该发布了,但是因为忙 QuarkDoc 一直没有时间整理,所以耽搁到今天,现在回归正轨. C# 5.0 虽然只引入了2个新关键词:async和await.然而它大大简化了异步 ...

  7. C#_根据银行卡卡号判断银行名称

    /// <summary> /// 银行信息 /// </summary> public class BankInfo { #region 数组形式存储银行BIN号 /// & ...

  8. 理解Liang-Barsky裁剪算法的算法原理

    0.补充知识向量点积:结果等于0, 两向量垂直; 结果大于0, 两向量夹角小于90度; 结果小于0, 两向量夹角大于90度.直线的参数方程:(x1, y1)和(x2, y2)两点确定的直线, 其参数方 ...

  9. javaScript常用API合集

    节点 1.1 节点属性 Node.nodeName   //返回节点名称,只读 Node.nodeType   //返回节点类型的常数值,只读 Node.nodeValue  //返回Text或Com ...

  10. Tomcat启动失败

    前景:使用的是tomcat9.0,配置好后,使用一切正常,刷慕课跟着做练习,也一切正常.出事在于,老师为了方便直接拷之前写的一个项目,我照做了,老师改了虚拟路径了,我忘记改了,然后跑了一下项目就出毛病 ...