题目描述

  有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值
的差最小。

输入

  第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每
行相邻两数之间用一空格分隔。
100%的数据2<=a,b<=1000,n<=a,n<=b,n<=1000

输出

  仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。

样例输入

5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2

样例输出

1
 
 
二维ST表,f[i][j][k]表示以i,j为右下端点边长为2k的正方形内的最大值,最小值同理,枚举每个点作为右下端点求一下最大值和最小值的差来更新答案即可。

  1. #include<set>
  2. #include<map>
  3. #include<queue>
  4. #include<stack>
  5. #include<cmath>
  6. #include<cstdio>
  7. #include<vector>
  8. #include<bitset>
  9. #include<cstring>
  10. #include<iostream>
  11. #include<algorithm>
  12. using namespace std;
  13. int a,b;
  14. int n,m;
  15. int f[1010][1010][12];
  16. int g[1010][1010][12];
  17. int ans=1e9+7;
  18. int main()
  19. {
  20. scanf("%d%d%d",&a,&b,&n);
  21. for(int i=1;i<=a;i++)
  22. {
  23. for(int j=1;j<=b;j++)
  24. {
  25. scanf("%d",&f[i][j][0]);
  26. g[i][j][0]=f[i][j][0];
  27. }
  28. }
  29. for(int k=1;k<=10;k++)
  30. {
  31. for(int i=1;i<=a;i++)
  32. {
  33. for(int j=1;j<=b;j++)
  34. {
  35. if(i<(1<<k)||j<(1<<k))
  36. {
  37. continue;
  38. }
  39. f[i][j][k]=max(max(f[i][j][k-1],f[i-(1<<(k-1))][j-(1<<(k-1))][k-1]),max(f[i-(1<<(k-1))][j][k-1],f[i][j-(1<<(k-1))][k-1]));
  40. g[i][j][k]=min(min(g[i][j][k-1],g[i-(1<<(k-1))][j-(1<<(k-1))][k-1]),min(g[i-(1<<(k-1))][j][k-1],g[i][j-(1<<(k-1))][k-1]));
  41. }
  42. }
  43. }
  44. for(int i=0;;i++)
  45. {
  46. if((1<<i)<=n)
  47. {
  48. m=i;
  49. }
  50. else
  51. {
  52. break;
  53. }
  54. }
  55. for(int i=n;i<=a;i++)
  56. {
  57. for(int j=n;j<=b;j++)
  58. {
  59. int mx=max(max(f[i][j][m],f[i-n+(1<<m)][j-n+(1<<m)][m]),max(f[i][j-n+(1<<m)][m],f[i-n+(1<<m)][j][m]));
  60. int mn=min(min(g[i][j][m],g[i-n+(1<<m)][j-n+(1<<m)][m]),min(g[i][j-n+(1<<m)][m],g[i-n+(1<<m)][j][m]));
  61. ans=min(mx-mn,ans);
  62. }
  63. }
  64. printf("%d",ans);
  65. }

BZOJ1047[HAOI2007]理想的正方形——二维ST表的更多相关文章

  1. [BZOJ1047][HAOI2007]理想的正方形 二维单调队列

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047 我们对每矩阵的一列维护一个大小为$n$的单调队列,队中元素为矩阵中元素.然后扫描每一 ...

  2. bzoj1047 [HAOI2007]理想的正方形——二维单调队列

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1047 就是先对行做一遍单调队列,再对那个结果按列做一遍单调队列即可. 代码如下: #incl ...

  3. 【BZOJ1047】[HAOI2007]理想的正方形 (倍增ST表)

    [HAOI2007]理想的正方形 题目描述 有一个\(a*b\)的整数组成的矩阵,现请你从中找出一个\(n*n\)的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: ...

  4. 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列

    题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...

  5. [HNOI2007] 理想正方形 二维ST表

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...

  6. 【bzoj1047】[HAOI2007]理想的正方形 二维RMQ

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...

  7. 【洛谷 P2216】 [HAOI2007]理想的正方形(二维ST表)

    题目链接 做出二维\(ST\)表,然后\(O(n^2)\)扫一遍就好了. #include <cstdio> #include <cstring> #include <a ...

  8. BZOJ3577:玩手机(最大流,二维ST表)

    Description 现在有一堆手机放在坐标网格里面(坐标从1开始),坐标(i,j)的格子有s_(i,j)个手机. 玩手机当然需要有信号,不过这里的手机与基站与我们不太一样.基站分为两种:发送站和接 ...

  9. 【CodeForces】713 D. Animals and Puzzle 动态规划+二维ST表

    [题目]D. Animals and Puzzle [题意]给定n*m的01矩阵,Q次询问某个子矩阵内的最大正方形全1子矩阵边长.n,m<=1000,Q<=10^6. [算法]动态规划DP ...

随机推荐

  1. (推荐)用C++来开发Skyline应用

    原文地址:http://www.hailongchang.org/index.php/archives/category/terraexplorer 供大家学习参考.

  2. 在项目中,多个方法会调用相同的sql语句,怎么解决各个方法的不同sql查询,解决冲突。

    公司的代码中sql语句,可能会被多个方法进行调用,但是有的方法会关联到别的表,这样的话,如果修改不当,那么同样调用该sql语句的方法,会出现报错. 最近做的公司的一个功能,就出现这样一个问题,虽然本功 ...

  3. odoo 学习

    1.2.3.41.2.5.62.410.6变成1.234,1.256,2.4,10.6 def get_bom_namenum(self, cr, uid, ids, field_name, arg, ...

  4. Yarn 入门

    Yarn 是快速.可靠.安全的 js 包管理器. 关键词: nodejs, 包管理, yarn 简介 Yarn 是快速.可靠.安全的 js 包管理器. 快速 - Yarn 会缓存它下载的每个包,所以无 ...

  5. CF875F Royal Questions 基环树、Kruskal

    题目传送门:http://codeforces.com/problemset/problem/875/F 题意:有$N$个王子和$M$个公主,每个公主或王子都只能选择至多一个王子或公主作为自己的结婚对 ...

  6. Intel x86_64 Architecture Background 1

    首先讲一下什么是Intel x86,x86是指intel的开发的一种32位指令集,从386开始时代开始的一直沿用至今,是一种cisc指令集.x84_64是x86 CPU开始迈向64位的时候,有2选择: ...

  7. 异步编程(async&await)

    前言 本来这篇文章上个月就该发布了,但是因为忙 QuarkDoc 一直没有时间整理,所以耽搁到今天,现在回归正轨. C# 5.0 虽然只引入了2个新关键词:async和await.然而它大大简化了异步 ...

  8. Jmeter(二十八)_Docker+Jmeter+Gitlab+Jenkins+Ant(容器化的接口自动化持续集成平台)

    这套接口自动化持续集成环境已经部署差不多了,现在说说我的设计思路 1:利用Docker容器化Gitlab,Jenkins,Jmeter,Ant,链接如下 Docker_容器化gitlab Docker ...

  9. Nginx挂载维护页或返回自定义响应信息

    在服务停机升级或者服务暂不可用时,往往希望能够返回给用户更为明确和友好的响应信息.可以通过修改nginx配置文件,达到返回自定义信息的效果.有如下几种配置方式: (1)Nginx接收到的所有请求,都返 ...

  10. [T-ARA][ORGR]

    歌词来源:http://music.163.com/#/song?id=29343993 作曲 : 4번타자/에스킴 [作曲 : 4p/beon-Ta-c/ja-/e-seu-Kim] 作词 : 4번 ...