BZOJ1047[HAOI2007]理想的正方形——二维ST表
题目描述
有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值
的差最小。
输入
第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每
行相邻两数之间用一空格分隔。
100%的数据2<=a,b<=1000,n<=a,n<=b,n<=1000
输出
仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。
样例输入
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
样例输出
- #include<set>
- #include<map>
- #include<queue>
- #include<stack>
- #include<cmath>
- #include<cstdio>
- #include<vector>
- #include<bitset>
- #include<cstring>
- #include<iostream>
- #include<algorithm>
- using namespace std;
- int a,b;
- int n,m;
- int f[1010][1010][12];
- int g[1010][1010][12];
- int ans=1e9+7;
- int main()
- {
- scanf("%d%d%d",&a,&b,&n);
- for(int i=1;i<=a;i++)
- {
- for(int j=1;j<=b;j++)
- {
- scanf("%d",&f[i][j][0]);
- g[i][j][0]=f[i][j][0];
- }
- }
- for(int k=1;k<=10;k++)
- {
- for(int i=1;i<=a;i++)
- {
- for(int j=1;j<=b;j++)
- {
- if(i<(1<<k)||j<(1<<k))
- {
- continue;
- }
- f[i][j][k]=max(max(f[i][j][k-1],f[i-(1<<(k-1))][j-(1<<(k-1))][k-1]),max(f[i-(1<<(k-1))][j][k-1],f[i][j-(1<<(k-1))][k-1]));
- g[i][j][k]=min(min(g[i][j][k-1],g[i-(1<<(k-1))][j-(1<<(k-1))][k-1]),min(g[i-(1<<(k-1))][j][k-1],g[i][j-(1<<(k-1))][k-1]));
- }
- }
- }
- for(int i=0;;i++)
- {
- if((1<<i)<=n)
- {
- m=i;
- }
- else
- {
- break;
- }
- }
- for(int i=n;i<=a;i++)
- {
- for(int j=n;j<=b;j++)
- {
- int mx=max(max(f[i][j][m],f[i-n+(1<<m)][j-n+(1<<m)][m]),max(f[i][j-n+(1<<m)][m],f[i-n+(1<<m)][j][m]));
- int mn=min(min(g[i][j][m],g[i-n+(1<<m)][j-n+(1<<m)][m]),min(g[i][j-n+(1<<m)][m],g[i-n+(1<<m)][j][m]));
- ans=min(mx-mn,ans);
- }
- }
- printf("%d",ans);
- }
BZOJ1047[HAOI2007]理想的正方形——二维ST表的更多相关文章
- [BZOJ1047][HAOI2007]理想的正方形 二维单调队列
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047 我们对每矩阵的一列维护一个大小为$n$的单调队列,队中元素为矩阵中元素.然后扫描每一 ...
- bzoj1047 [HAOI2007]理想的正方形——二维单调队列
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1047 就是先对行做一遍单调队列,再对那个结果按列做一遍单调队列即可. 代码如下: #incl ...
- 【BZOJ1047】[HAOI2007]理想的正方形 (倍增ST表)
[HAOI2007]理想的正方形 题目描述 有一个\(a*b\)的整数组成的矩阵,现请你从中找出一个\(n*n\)的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: ...
- 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列
题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...
- [HNOI2007] 理想正方形 二维ST表
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...
- 【bzoj1047】[HAOI2007]理想的正方形 二维RMQ
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...
- 【洛谷 P2216】 [HAOI2007]理想的正方形(二维ST表)
题目链接 做出二维\(ST\)表,然后\(O(n^2)\)扫一遍就好了. #include <cstdio> #include <cstring> #include <a ...
- BZOJ3577:玩手机(最大流,二维ST表)
Description 现在有一堆手机放在坐标网格里面(坐标从1开始),坐标(i,j)的格子有s_(i,j)个手机. 玩手机当然需要有信号,不过这里的手机与基站与我们不太一样.基站分为两种:发送站和接 ...
- 【CodeForces】713 D. Animals and Puzzle 动态规划+二维ST表
[题目]D. Animals and Puzzle [题意]给定n*m的01矩阵,Q次询问某个子矩阵内的最大正方形全1子矩阵边长.n,m<=1000,Q<=10^6. [算法]动态规划DP ...
随机推荐
- (推荐)用C++来开发Skyline应用
原文地址:http://www.hailongchang.org/index.php/archives/category/terraexplorer 供大家学习参考.
- 在项目中,多个方法会调用相同的sql语句,怎么解决各个方法的不同sql查询,解决冲突。
公司的代码中sql语句,可能会被多个方法进行调用,但是有的方法会关联到别的表,这样的话,如果修改不当,那么同样调用该sql语句的方法,会出现报错. 最近做的公司的一个功能,就出现这样一个问题,虽然本功 ...
- odoo 学习
1.2.3.41.2.5.62.410.6变成1.234,1.256,2.4,10.6 def get_bom_namenum(self, cr, uid, ids, field_name, arg, ...
- Yarn 入门
Yarn 是快速.可靠.安全的 js 包管理器. 关键词: nodejs, 包管理, yarn 简介 Yarn 是快速.可靠.安全的 js 包管理器. 快速 - Yarn 会缓存它下载的每个包,所以无 ...
- CF875F Royal Questions 基环树、Kruskal
题目传送门:http://codeforces.com/problemset/problem/875/F 题意:有$N$个王子和$M$个公主,每个公主或王子都只能选择至多一个王子或公主作为自己的结婚对 ...
- Intel x86_64 Architecture Background 1
首先讲一下什么是Intel x86,x86是指intel的开发的一种32位指令集,从386开始时代开始的一直沿用至今,是一种cisc指令集.x84_64是x86 CPU开始迈向64位的时候,有2选择: ...
- 异步编程(async&await)
前言 本来这篇文章上个月就该发布了,但是因为忙 QuarkDoc 一直没有时间整理,所以耽搁到今天,现在回归正轨. C# 5.0 虽然只引入了2个新关键词:async和await.然而它大大简化了异步 ...
- Jmeter(二十八)_Docker+Jmeter+Gitlab+Jenkins+Ant(容器化的接口自动化持续集成平台)
这套接口自动化持续集成环境已经部署差不多了,现在说说我的设计思路 1:利用Docker容器化Gitlab,Jenkins,Jmeter,Ant,链接如下 Docker_容器化gitlab Docker ...
- Nginx挂载维护页或返回自定义响应信息
在服务停机升级或者服务暂不可用时,往往希望能够返回给用户更为明确和友好的响应信息.可以通过修改nginx配置文件,达到返回自定义信息的效果.有如下几种配置方式: (1)Nginx接收到的所有请求,都返 ...
- [T-ARA][ORGR]
歌词来源:http://music.163.com/#/song?id=29343993 作曲 : 4번타자/에스킴 [作曲 : 4p/beon-Ta-c/ja-/e-seu-Kim] 作词 : 4번 ...