题目描述

  有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值
的差最小。

输入

  第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每
行相邻两数之间用一空格分隔。
100%的数据2<=a,b<=1000,n<=a,n<=b,n<=1000

输出

  仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。

样例输入

5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2

样例输出

1
 
 
二维ST表,f[i][j][k]表示以i,j为右下端点边长为2k的正方形内的最大值,最小值同理,枚举每个点作为右下端点求一下最大值和最小值的差来更新答案即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int a,b;
int n,m;
int f[1010][1010][12];
int g[1010][1010][12];
int ans=1e9+7;
int main()
{
scanf("%d%d%d",&a,&b,&n);
for(int i=1;i<=a;i++)
{
for(int j=1;j<=b;j++)
{
scanf("%d",&f[i][j][0]);
g[i][j][0]=f[i][j][0];
}
}
for(int k=1;k<=10;k++)
{
for(int i=1;i<=a;i++)
{
for(int j=1;j<=b;j++)
{
if(i<(1<<k)||j<(1<<k))
{
continue;
}
f[i][j][k]=max(max(f[i][j][k-1],f[i-(1<<(k-1))][j-(1<<(k-1))][k-1]),max(f[i-(1<<(k-1))][j][k-1],f[i][j-(1<<(k-1))][k-1]));
g[i][j][k]=min(min(g[i][j][k-1],g[i-(1<<(k-1))][j-(1<<(k-1))][k-1]),min(g[i-(1<<(k-1))][j][k-1],g[i][j-(1<<(k-1))][k-1]));
}
}
}
for(int i=0;;i++)
{
if((1<<i)<=n)
{
m=i;
}
else
{
break;
}
}
for(int i=n;i<=a;i++)
{
for(int j=n;j<=b;j++)
{
int mx=max(max(f[i][j][m],f[i-n+(1<<m)][j-n+(1<<m)][m]),max(f[i][j-n+(1<<m)][m],f[i-n+(1<<m)][j][m]));
int mn=min(min(g[i][j][m],g[i-n+(1<<m)][j-n+(1<<m)][m]),min(g[i][j-n+(1<<m)][m],g[i-n+(1<<m)][j][m]));
ans=min(mx-mn,ans);
}
}
printf("%d",ans);
}

BZOJ1047[HAOI2007]理想的正方形——二维ST表的更多相关文章

  1. [BZOJ1047][HAOI2007]理想的正方形 二维单调队列

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047 我们对每矩阵的一列维护一个大小为$n$的单调队列,队中元素为矩阵中元素.然后扫描每一 ...

  2. bzoj1047 [HAOI2007]理想的正方形——二维单调队列

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1047 就是先对行做一遍单调队列,再对那个结果按列做一遍单调队列即可. 代码如下: #incl ...

  3. 【BZOJ1047】[HAOI2007]理想的正方形 (倍增ST表)

    [HAOI2007]理想的正方形 题目描述 有一个\(a*b\)的整数组成的矩阵,现请你从中找出一个\(n*n\)的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: ...

  4. 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列

    题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...

  5. [HNOI2007] 理想正方形 二维ST表

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...

  6. 【bzoj1047】[HAOI2007]理想的正方形 二维RMQ

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...

  7. 【洛谷 P2216】 [HAOI2007]理想的正方形(二维ST表)

    题目链接 做出二维\(ST\)表,然后\(O(n^2)\)扫一遍就好了. #include <cstdio> #include <cstring> #include <a ...

  8. BZOJ3577:玩手机(最大流,二维ST表)

    Description 现在有一堆手机放在坐标网格里面(坐标从1开始),坐标(i,j)的格子有s_(i,j)个手机. 玩手机当然需要有信号,不过这里的手机与基站与我们不太一样.基站分为两种:发送站和接 ...

  9. 【CodeForces】713 D. Animals and Puzzle 动态规划+二维ST表

    [题目]D. Animals and Puzzle [题意]给定n*m的01矩阵,Q次询问某个子矩阵内的最大正方形全1子矩阵边长.n,m<=1000,Q<=10^6. [算法]动态规划DP ...

随机推荐

  1. jmeter(二十)阶梯式加压测试

    性能测试中,有时需要模拟一种实际生产中经常出现的情况,即:从某个值开始不断增加压力,直至达到某个值,然后持续运行一段时间. 在jmeter中,有这样一个插件,可以帮我们实现这个功能,这个插件就是:St ...

  2. jQuery与js例子

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. ASP.NET Core读取AppSettings (转载)

    今天在把之前一个ASP.NET MVC5的Demo项目重写成ASP.NET Core,发现原先我们一直用的ConfigurationManager.AppSettings[]读取Web.config中 ...

  4. 解决webapi首次启动速度慢的问题 - z

    原理与下面两篇文章提及的相同 https://blog.csdn.net/godcyx/article/details/38517135 http://www.huaface.com/p/12

  5. java异步编程降低延迟

    目录 java异步编程降低延迟 一.ExecutorService和CompletionService 二.CompletableFuture(重要) 三.stream中的parallel(并行流) ...

  6. Luogu P2261 [CQOI2007]余数求和

    最近中考放假几天都在怼一道BJOI2018的水题,但卡死在90pts跑不动啊! 然后今天发现终于过了然而Hack的数据全RE了然后就开始找新的题目来找回信心. 然后发现智能推荐里有这道题,然后想了1m ...

  7. springmvc 解决 controller 中出现死循环并 stackoverflow 的问题

    这是因为这个controller中的方法返回值为void类型,且没有request response这类衍生的重定向,或者返回值为String,但是是null等等的情况,都会引起死循环,然后stack ...

  8. Centos下内网DNS主从环境部署记录

    一.DNS是什么?DNS(Domain Name System),即域名系统.它使用层次结构的命名系统,将域名和IP地址相互映射,形成一个分布式数据库系统. DNS采用C-S架构,服务器端工作在UDP ...

  9. ACM找bug方案

    测试数据和一些常见的数据都通过了然而还是wrong,可以试试下面的一些解决方案: 1.数据爆掉 ①  可以改变数据类型,以容纳 ②  修改当前算法,比如a*a/b可以改写成a/b*a 2 特殊情况,例 ...

  10. Pair Project 1 elevator

    结对编程——电梯调度 12061181 高孟烨 12061182 郝倩 1.结对编程的优缺点: 优点:结对编程可以结合两个人各自擅长之地,充分发挥两个人各自的优势,两个人一起合作效率会更高.一份工作两 ...