Luogu2046 NOI2010 海拔 平面图、最小割、最短路
首先一个不知道怎么证的结论:任意点的\(H\)只会是\(0\)或\(1\)
那么可以发现原题的本质就是一个最小割,左上角为\(S\),右下角为\(T\),被割开的两个部分就是\(H=0\)与\(H=1\)的部分
直接上Dinic似乎有90pts
然后可以发现原图是一个经典的平面图
于是将平面图最小割转化成对偶图最短路模型,然后堆优化Dijkstra即可。
关于平面图最小割转化为对偶图最短路可以看这个
#include<bits/stdc++.h>
#define id(i , j) (((i) - 1) * N + (j))
#define INF 0x3f3f3f3f
#define st first
#define nd second
#define PII pair < int , int >
//This code is written by Itst
using namespace std;
inline int read(){
int a = 0;
char c = getchar();
bool f = 0;
while(!isdigit(c) && c != EOF){
if(c == '-')
f = 1;
c = getchar();
}
if(c == EOF)
exit(0);
while(isdigit(c)){
a = (a << 3) + (a << 1) + (c ^ '0');
c = getchar();
}
return f ? -a : a;
}
const int MAXN = 255010 , MAXM = 2050010;
struct Edge{
int end , upEd , w;
}Ed[MAXM];
int head[MAXN] , dis[MAXN];
int N , S , T , cntEd = 1;
priority_queue < PII > q;
inline void addEd(int a , int b , int c){
Ed[++cntEd].end = b;
Ed[cntEd].upEd = head[a];
Ed[cntEd].w = c;
head[a] = cntEd;
}
inline void Dijk(){
memset(dis , 0x3f , sizeof(dis));
dis[S] = 0;
q.push(PII(0 , S));
while(!q.empty()){
PII t = q.top();
q.pop();
if(-t.st > dis[t.nd])
continue;
if(t.nd == T)
return;
for(int i = head[t.nd] ; i ; i = Ed[i].upEd)
if(dis[Ed[i].end] > dis[t.nd] + Ed[i].w){
dis[Ed[i].end] = dis[t.nd] + Ed[i].w;
q.push(PII(-dis[Ed[i].end] , Ed[i].end));
}
}
}
void input(){
N = read();
T = id(N , N) + 1;
for(int i = 0 ; i <= N ; ++i)
for(int j = 1 ; j <= N ; ++j){
int k = read();
if(i == 0)
addEd(S , id(i + 1 , j) , k);
else
if(i == N)
addEd(id(i , j) , T , k);
else
addEd(id(i , j) , id(i + 1 , j) , k);
}
for(int i = 1 ; i <= N ; ++i)
for(int j = 0 ; j <= N ; ++j){
int k = read();
if(j == 0)
addEd(id(i , j + 1) , T , k);
else
if(j == N)
addEd(S , id(i , j) , k);
else
addEd(id(i , j + 1) , id(i , j) , k);
}
for(int i = 0 ; i <= N ; ++i)
for(int j = 1 ; j <= N ; ++j){
int k = read();
if(i && i != N)
addEd(id(i + 1 , j) , id(i , j) , k);
}
for(int i = 1 ; i <= N ; ++i)
for(int j = 0 ; j <= N ; ++j){
int k = read();
if(j && j != N)
addEd(id(i , j) , id(i , j + 1) , k);
}
}
void work(){
Dijk();
cout << dis[T];
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in" , "r" , stdin);
//freopen("out" , "w" , stdout);
#endif
input();
work();
return 0;
}
Luogu2046 NOI2010 海拔 平面图、最小割、最短路的更多相关文章
- Vijos1734 NOI2010 海拔 平面图最小割
建立平面图的对偶图,把最小割转化成最短路问题 Dijkstra算法堆优化 (被输入顺序搞WA了好几次T_T) #include <cstdio> #include <cstring& ...
- bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路)
bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路) 题目描述: bzoj luogu 题解时间: 首先考虑海拔待定点的$h$都应该是多少 很明显它们都是$0$或$1$,并且所 ...
- BZOJ2007/LG2046 「NOI2010」海拔 平面图最小割转对偶图最短路
问题描述 BZOJ2007 LG2046 题解 发现左上角海拔为 \(0\) ,右上角海拔为 \(1\) . 上坡要付出代价,下坡没有收益,所以有坡度的路越少越好. 所以海拔为 \(1\) 的点,和海 ...
- BZOJ 2007 海拔(平面图最小割转对偶图最短路)
首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这 ...
- bzoj 1001 狼抓兔子 —— 平面图最小割(最短路)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 平面图最小割可以转化成最短路问题: 建图时看清楚题目的 input ... 代码如下: ...
- BZOJ 2007 海拔(平面图最小割-最短路)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2007 题意:给出一个n*n的格子,那么顶点显然有(n+1)*(n+1)个.每两个相邻顶点 ...
- 洛谷P2046 [NOI2010]海拔(最小割,平面图转对偶图)
传送门 不明白为什么大佬们一眼就看出这是最小割…… 所以总而言之这就是一个最小割我也不知道为什么 然后边数太多直接跑会炸,所以要把平面图转对偶图,然后跑一个最短路即可 至于建图……请看代码我实在无能为 ...
- bzoj 2007: [Noi2010]海拔【最小割+dijskstra】
上来就跑3e5的最大流--脑子抽了 很容易看出,每个地方的海拔都是0或1因为再高了没有意义,又,上去下来再上去没有意义,所以最后一定是从s连着一片0,剩下连着t一片1,然后有贡献的就是01交接的那些边 ...
- 【BZOJ2007】【NOI2010】海拔(最小割,平面图转对偶图,最短路)
[BZOJ2007][NOI2010]海拔(最小割,平面图转对偶图,最短路) 题面 BZOJ 洛谷 Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域. ...
随机推荐
- Windows下判断jdk是否安装好以及环境变量是否配置好
cmd下执行: 1.java 2.javac 3.where java 如果三个都没问题,说明安装成功&环境变量配置成功
- sqlserver配置实践
对于一套新的sqlserver服务器,我们首先要对它做一些必要的优化配置,确保在生产上比较长的时间段内可以比较稳定的,良好的运行. 新的sqlserver服务器上安装的sqlserver版本,可以选择 ...
- loadrunner Vugen-Tools General-Options-Replay设置
Vugen-Tools General-Options-Replay设置 by:授客 QQ:1033553122 可以以动画模式或非动画模式(animated mode or non-animated ...
- Runtime消息动态解析与转发流程
先上图: 下面根据具体代码看这张图. 一.创建一个Person类, Person.h #import <Foundation/Foundation.h> @interface Person ...
- React数据流和组件间的通信总结
今天来给大家总结下React的单向数据流与组件间的沟通. 首先,我认为使用React的最大好处在于:功能组件化,遵守前端可维护的原则. 先介绍单向数据流吧. React单向数据流: React是单向数 ...
- SQL SERVER利用BCP命令在命令行下导出数据到csv文件中
bcp "select * from (DBNAME).dbo.qt_trace where User_1 is not null" queryout c:\%date:~6,4% ...
- 用Python实现数据结构之优先级队列
优先级队列 如果我们给每个元素都分配一个数字来标记其优先级,不妨设较小的数字具有较高的优先级,这样我们就可以在一个集合中访问优先级最高的元素并对其进行查找和删除操作了.这样,我们就引入了优先级队列 这 ...
- Python实例---模拟微信网页登录(day5)
第六步: 实现发送/接受消息---day5代码 settings.py """ Django settings for weixin project. Generated ...
- Git永久删除文件和历史记录
目录 Git永久删除文件和历史记录 使用filter-branch 添加到.gitignore文件里并push修改后的repo 清理和回收空间 Git永久删除文件和历史记录 造成你想从git存储库中永 ...
- 【PAT】B1063 计算谱半径(20 分)
水题,没有难点 #include<stdio.h> #include<algorithm> #include<math.h> using namespace std ...