Luogu P2059 [JLOI2013]卡牌游戏
一道比较简单的概率DP
首先看到这种题目和数据范围,就要毫不犹豫地列DP方程:
我们令\(f_{i,j}\)表示还剩下i个人时编号为j的人的胜率,那么首先我们可以知道边界条件\(f_{1,1}=1\)
然后我们考虑多一个人的情况会是怎样。
我们先枚举还剩下\(i(2<=i<=n)\)个人,然后对于每一个人\(j(1<=j<=i)\)(注意这里是的\(j\)指的是在这\(i\)个人里的编号)
然后枚举卡片\(k\),对于上面的数字\(a_k\)我们先得出这一轮会被淘汰的人的编号\(x\)。然后如果\(x\ne j\)那么就有转移:
- \(f_{i,j}+=\frac{f_{i-1,i-x+j}}{m}(x>j)\)
- \(f_{i,j}+=\frac{f_{i-1,j-x}}{m}(x<j)\)
然后就可以A了
CODE
#include<cstdio>
using namespace std;
const int N=55;
int a[N],n,m;
double f[N][N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch=tc();
while (ch<'0'||ch>'9') ch=tc();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=tc();
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i,j,k; read(n); read(m);
for (i=1;i<=m;++i)
read(a[i]); f[1][1]=1.0;
for (i=2;i<=n;++i)
for (j=1;j<=i;++j)
for (k=1;k<=m;++k)
{
int x=a[k]%i?a[k]%i:i;
if (x>j) f[i][j]+=(double)f[i-1][i-x+j]/m;
if (x<j) f[i][j]+=(double)f[i-1][j-x]/m;
}
for (i=1;i<=n;++i)
printf("%.2lf%% ",f[n][i]*100.0);
return 0;
}
Luogu P2059 [JLOI2013]卡牌游戏的更多相关文章
- 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告
P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...
- P2059 [JLOI2013]卡牌游戏
题目描述 N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把 ...
- 洛谷P2059 [JLOI2013]卡牌游戏
题目描述 N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把 ...
- P2059 [JLOI2013]卡牌游戏 概率DP
link:https://www.luogu.org/problemnew/show/P2059 题意: 有n个人,类似约瑟夫环的形式踢人,但是报的数是不同的,是在给定的许多数中随机抽取,问最后第i个 ...
- 洛谷 P2059 [JLOI2013]卡牌游戏(概率dp)
题面 洛谷 题解 \(f[i][j]\)表示有i个人参与游戏,从庄家(即1)数j个人获胜的概率是多少 \(f[1][1] = 1\) 这样就可以不用讨论淘汰了哪些人和顺序 枚举选庄家选那张牌, 枚举下 ...
- Luogu 2059 [JLOI2013]卡牌游戏 - 概率DP
Solution 设状态 $F[i][j] $为 还剩余 $i$ 个人时, 第 $j$ 个人 的胜率. 边界: $F[1][1] = 1$(只剩下一个人了). 这样设置状态就能使 $i-1$ 个人的答 ...
- BZOJ_3191_[JLOI2013]卡牌游戏_概率DP
BZOJ_3191_[JLOI2013]卡牌游戏_概率DP Description N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随 ...
- bzoj千题计划202:bzoj3191: [JLOI2013]卡牌游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=3191 每个人获胜的概率只与其在排列中与庄家的相对位置有关 dp[i][j] 还剩i个人时,从庄家数第 ...
- [JLOI2013]卡牌游戏 概率DP
[JLOI2013]卡牌游戏 概率DP 题面 \(dfs\)复杂度爆炸,考虑DP.发现决策时,我们只用关心当前玩家是从庄家数第几个玩家与当前抽到的牌是啥.于是设计状态\(f[i][j]\)表示有\(i ...
随机推荐
- iOS开发-本地存储(偏好设置,Plist,归档)
1. NSUserDefaults //TODO: 1.NSUserDefaults NSUserDefaults类除了可以存储数组.字典.NSdata外,还可以直接存储OC基本类型属性.但是不能 ...
- HashTree【转】
http://blog.csdn.net/yang_yulei/article/details/46337405 在各种数据结构(线性表.树等)中,记录在结构中的相对位置是随机的.因此在机构中查找记录 ...
- 基于python的快速傅里叶变换FFT(二)
基于python的快速傅里叶变换FFT(二)本文在上一篇博客的基础上进一步探究正弦函数及其FFT变换. 知识点 FFT变换,其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法. ...
- The Art of Unit Testing With Examples in .NET
The Art of Unit Testing With Examples in .NET
- Django【进阶篇】
目录 一.Model 二.admin 三.Form组件 四.Cookie 五.Session 六.分页 七.序列化 一.Model 数据库的配置 1.django默认支持sqlite,mysql, o ...
- Python基础知识:列表
1.pop(i)删除列表任意位置元素,并继续使用它,如果括号为空,默认删除末尾 #pop()函数 guests=['Liming','Liuhan','Hanjieming'] for guest i ...
- 【PAT】B1060 爱丁顿数(25 分)
逻辑问题,对我来说还是挺有难度的,一开始想不通 我输入数据并以数据为下标,数据出现次数为内容存储 然后从后遍历计算所有大于当前下标的元素出现的次数 最后遍历一遍确定是否为爱丁顿数,如果大于当前已经找到 ...
- Mysql基础之 基础知识解释
Mysql基础知识 RDBMS:关系型数据库管理系统.是将数据组织成相关的行和列的系统 存储过程:是存储在数据库中的一段声明性语句.触发器.java.php等都可以调用其存储过程.早期的mysql版本 ...
- 4.91Python数据类型之(6)元组
前言 有时候,我们为了数值的安全性,不许用户修改数据,今天我们就来讲讲关于python不可变的数据类型--- 元组数据 目录 1.元组的基本定义 2.元组的基本操作 (一)元组的基本定义 1.元组的概 ...
- 17秋 软件工程 团队第五次作业 Alpha Scrum2
17秋 软件工程 团队第五次作业 Alpha Scrum2 今日完成的任务 杰麟:Java后端的学习: 世强:登录和注册接口编写: 港晨:完成数据库表的设计: 树民.陈翔:完成超级管理员后端框架. 其 ...