一道比较简单的概率DP

首先看到这种题目和数据范围,就要毫不犹豫地列DP方程:

我们令\(f_{i,j}\)表示还剩下i个人时编号为j的人的胜率,那么首先我们可以知道边界条件\(f_{1,1}=1\)

然后我们考虑多一个人的情况会是怎样。

我们先枚举还剩下\(i(2<=i<=n)\)个人,然后对于每一个人\(j(1<=j<=i)\)(注意这里是的\(j\)指的是在这\(i\)个人里的编号

然后枚举卡片\(k\),对于上面的数字\(a_k\)我们先得出这一轮会被淘汰的人的编号\(x\)。然后如果\(x\ne j\)那么就有转移:

  • \(f_{i,j}+=\frac{f_{i-1,i-x+j}}{m}(x>j)\)
  • \(f_{i,j}+=\frac{f_{i-1,j-x}}{m}(x<j)\)

然后就可以A了

CODE

#include<cstdio>
using namespace std;
const int N=55;
int a[N],n,m;
double f[N][N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch=tc();
while (ch<'0'||ch>'9') ch=tc();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=tc();
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i,j,k; read(n); read(m);
for (i=1;i<=m;++i)
read(a[i]); f[1][1]=1.0;
for (i=2;i<=n;++i)
for (j=1;j<=i;++j)
for (k=1;k<=m;++k)
{
int x=a[k]%i?a[k]%i:i;
if (x>j) f[i][j]+=(double)f[i-1][i-x+j]/m;
if (x<j) f[i][j]+=(double)f[i-1][j-x]/m;
}
for (i=1;i<=n;++i)
printf("%.2lf%% ",f[n][i]*100.0);
return 0;
}

Luogu P2059 [JLOI2013]卡牌游戏的更多相关文章

  1. 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告

    P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...

  2. P2059 [JLOI2013]卡牌游戏

    题目描述 N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把 ...

  3. 洛谷P2059 [JLOI2013]卡牌游戏

    题目描述 N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把 ...

  4. P2059 [JLOI2013]卡牌游戏 概率DP

    link:https://www.luogu.org/problemnew/show/P2059 题意: 有n个人,类似约瑟夫环的形式踢人,但是报的数是不同的,是在给定的许多数中随机抽取,问最后第i个 ...

  5. 洛谷 P2059 [JLOI2013]卡牌游戏(概率dp)

    题面 洛谷 题解 \(f[i][j]\)表示有i个人参与游戏,从庄家(即1)数j个人获胜的概率是多少 \(f[1][1] = 1\) 这样就可以不用讨论淘汰了哪些人和顺序 枚举选庄家选那张牌, 枚举下 ...

  6. Luogu 2059 [JLOI2013]卡牌游戏 - 概率DP

    Solution 设状态 $F[i][j] $为 还剩余 $i$ 个人时, 第 $j$ 个人 的胜率. 边界: $F[1][1] = 1$(只剩下一个人了). 这样设置状态就能使 $i-1$ 个人的答 ...

  7. BZOJ_3191_[JLOI2013]卡牌游戏_概率DP

    BZOJ_3191_[JLOI2013]卡牌游戏_概率DP Description   N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随 ...

  8. bzoj千题计划202:bzoj3191: [JLOI2013]卡牌游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=3191 每个人获胜的概率只与其在排列中与庄家的相对位置有关 dp[i][j] 还剩i个人时,从庄家数第 ...

  9. [JLOI2013]卡牌游戏 概率DP

    [JLOI2013]卡牌游戏 概率DP 题面 \(dfs\)复杂度爆炸,考虑DP.发现决策时,我们只用关心当前玩家是从庄家数第几个玩家与当前抽到的牌是啥.于是设计状态\(f[i][j]\)表示有\(i ...

随机推荐

  1. MySQL InnoDB表和索引之聚簇索引与第二索引

    MySQL InnoDB表和索引之聚簇索引与第二索引 By:授客QQ:1033553122 每个InnoDB表都有一个称之为聚簇索引(clustered index)的特殊索引,存储记录行数据.通常, ...

  2. 性能测试 Apache参数配置与性能调优

    Apache性能调优 by:授客 QQ:1033553122 环境: Apache 2.4 1.选择合适的MPM(Multi -Processing Modules, 多处理模块) Unix/Linu ...

  3. Android 2018最新验证手机号正则表达式

    /** * 判断字符串是否符合手机号码格式 * 移动号段: 134,135,136,137,138,139,147,150,151,152,157,158,159,170,178,182,183,18 ...

  4. Android Context类

    一.Context类的使用场景 ①.创建Application对象时,而且整个app公用一个Application对象 ②.创建Service对象时 ③.创建Activity对象时 二.应用程序共有几 ...

  5. JMeter—前置处理器(九)

    参考<全栈性能测试修炼宝典JMeter实战>第六章 JMeter 元件详解中第四节前置处理器前置处理器用来处理请求前的一些准备工作,比如参数设置.环境变变量设置等 一.BeanShell ...

  6. ffmpeg文件切片

    先用ffmpeg把abc.mp4文件转换为abc.ts文件: ffmpeg -y -i abc.mp4 -vcodec copy -acodec copy -vbsf h264_mp4toannexb ...

  7. Ulua对象管理方式

    不管是C++中还是在C#中,在都绕不开一个问题:类对象怎么在Lua中使用的问题,还好Lua提供了Userdata以及ligh Userdata结构类型,通过扩展可以处理这方面的问题.现在的很多框架也大 ...

  8. 团队Alpha博客链接目录

    Dipper团队Alpha博客链接目录 团队Alpha冲刺博客 第一次冲刺 第二次冲刺 第三次冲刺 第四次冲刺 第五次冲刺 第六次冲刺 第七次冲刺 第八次冲刺 第九次冲刺 第十次冲刺 第十一次冲刺 第 ...

  9. Activiti工作流的定义部署和执行

        工作流引擎 个人觉得直接理解工作流引擎概念有点难度,我们可以先通过了解工作流引擎的职责再反过来理解工作流引擎,工作流引擎一般都做两件事情: 1.定义流程,也就是给我们提供某种规范来定义规则,以 ...

  10. 关于hover和after、before合用

    通常hover后面跟的选择器,都是在myClass结构之下 的dom元素. 如果想在myClass下添加after等,就需要两个::号. 注:after/before是属于myclass的下级元素,并 ...