Luogu P2059 [JLOI2013]卡牌游戏
一道比较简单的概率DP
首先看到这种题目和数据范围,就要毫不犹豫地列DP方程:
我们令\(f_{i,j}\)表示还剩下i个人时编号为j的人的胜率,那么首先我们可以知道边界条件\(f_{1,1}=1\)
然后我们考虑多一个人的情况会是怎样。
我们先枚举还剩下\(i(2<=i<=n)\)个人,然后对于每一个人\(j(1<=j<=i)\)(注意这里是的\(j\)指的是在这\(i\)个人里的编号)
然后枚举卡片\(k\),对于上面的数字\(a_k\)我们先得出这一轮会被淘汰的人的编号\(x\)。然后如果\(x\ne j\)那么就有转移:
- \(f_{i,j}+=\frac{f_{i-1,i-x+j}}{m}(x>j)\)
- \(f_{i,j}+=\frac{f_{i-1,j-x}}{m}(x<j)\)
然后就可以A了
CODE
#include<cstdio>
using namespace std;
const int N=55;
int a[N],n,m;
double f[N][N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch=tc();
while (ch<'0'||ch>'9') ch=tc();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=tc();
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i,j,k; read(n); read(m);
for (i=1;i<=m;++i)
read(a[i]); f[1][1]=1.0;
for (i=2;i<=n;++i)
for (j=1;j<=i;++j)
for (k=1;k<=m;++k)
{
int x=a[k]%i?a[k]%i:i;
if (x>j) f[i][j]+=(double)f[i-1][i-x+j]/m;
if (x<j) f[i][j]+=(double)f[i-1][j-x]/m;
}
for (i=1;i<=n;++i)
printf("%.2lf%% ",f[n][i]*100.0);
return 0;
}
Luogu P2059 [JLOI2013]卡牌游戏的更多相关文章
- 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告
P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...
- P2059 [JLOI2013]卡牌游戏
题目描述 N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把 ...
- 洛谷P2059 [JLOI2013]卡牌游戏
题目描述 N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把 ...
- P2059 [JLOI2013]卡牌游戏 概率DP
link:https://www.luogu.org/problemnew/show/P2059 题意: 有n个人,类似约瑟夫环的形式踢人,但是报的数是不同的,是在给定的许多数中随机抽取,问最后第i个 ...
- 洛谷 P2059 [JLOI2013]卡牌游戏(概率dp)
题面 洛谷 题解 \(f[i][j]\)表示有i个人参与游戏,从庄家(即1)数j个人获胜的概率是多少 \(f[1][1] = 1\) 这样就可以不用讨论淘汰了哪些人和顺序 枚举选庄家选那张牌, 枚举下 ...
- Luogu 2059 [JLOI2013]卡牌游戏 - 概率DP
Solution 设状态 $F[i][j] $为 还剩余 $i$ 个人时, 第 $j$ 个人 的胜率. 边界: $F[1][1] = 1$(只剩下一个人了). 这样设置状态就能使 $i-1$ 个人的答 ...
- BZOJ_3191_[JLOI2013]卡牌游戏_概率DP
BZOJ_3191_[JLOI2013]卡牌游戏_概率DP Description N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随 ...
- bzoj千题计划202:bzoj3191: [JLOI2013]卡牌游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=3191 每个人获胜的概率只与其在排列中与庄家的相对位置有关 dp[i][j] 还剩i个人时,从庄家数第 ...
- [JLOI2013]卡牌游戏 概率DP
[JLOI2013]卡牌游戏 概率DP 题面 \(dfs\)复杂度爆炸,考虑DP.发现决策时,我们只用关心当前玩家是从庄家数第几个玩家与当前抽到的牌是啥.于是设计状态\(f[i][j]\)表示有\(i ...
随机推荐
- 安卓开发_数据存储技术_sqlite
一.SQLite SQLite第一个Alpha版本诞生于2000年5月,它是一款轻量级数据库,它的设计目标是嵌入式的,占用资源非常的低,只需要几百K的内存就够了.SQLite已经被多种软件和产品使用 ...
- 英雄无敌HoMM3-死亡阴影SOD-神之苏醒WOG-封神NABI-MOD等相关文件
英雄无敌HoMM3:死亡阴影SOD 英雄无敌3之死亡阴影(Heroes of Might and Magic III: Shadow of Death,简记为HoMM III: SOD)发行于1999 ...
- Log4J Appender - 将Log4J的日志内容发送到agent的source
项目中使用log4j打印的内容同时传输到flume 1.flume端 flume的agent配置内容如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 a1.sour ...
- Django 信息
Request information USER admin GET No GET data POST No POST data FILES No FILES data COOKIES Variabl ...
- Linksys EA6500刷ddwrt成功记
网上刷Linksys EA6500的资料不多,然后又绕了好多个弯子,自己记录备忘. 首先EA6500有两个版本v1和v2,对应的固件不同. 区分方法: 1.v1的背后是两个颜色一样的usb2.0 2. ...
- git 一些基本的命令操作总结
配置远程仓库:git remote add test http://xxxx/tool/device_management.git test为远程仓库别名克隆远程仓库到本地:git clone htt ...
- tcpdump抓包具体分析
Tcpdump抓包分析过程 一.TCP连接建立(三次握手) 过程 客户端A,服务器B,初始序号seq,确认号ack 初始状态:B处于监听状态,A处于打开状态 A -> B : seq = x ...
- January 10th, 2018 Week 02nd Wednesday
No need to have a reason to love you. Anything can be a reason not to love you. 喜欢你,不需要什么理由:不喜欢你,什么都 ...
- 静态库lib调试
1.首先生成lib文件的解决方案编译通过. 2.将最新的lib和头文件在需要调用的exe中,替换掉. 3.复制需要调试的cpp文件到exe解决方案下,并添加现有项. 4.运行无错误后,添加断点即可调试 ...
- <项目需求规格说明书> - 福大易宝
福大易宝-<项目需求规格说明书> 流程 在开会时统一了项目的开发背景,具体功能,然后在同一个工作环境下进行该说明书的编写. 分工 1.李佳铭.杜宏庆共同负责引言和项目描述的内容. 2.刘双 ...