51nod 1673 树有几多愁(链表维护树形DP+状压DP)
题意
lyk有一棵树,它想给这棵树重标号。
重标号后,这棵树的所有叶子节点的值为它到根的路径上的编号最小的点的编号。
这棵树的烦恼值为所有叶子节点的值的乘积。
lyk想让这棵树的烦恼值最大,你只需输出最大烦恼值对1e9+7取模后的值就可以了。
注意一开始1号节点为根,重标号后这个节点仍然为根。
数据保证叶子节点个数<=20。
思路
由于叶子节点数量很少,所以我们可以考虑状压来决定叶子节点的相对大小,如果已经确定叶子节点的相对大小了,那么就可以用贪心来解决问题了。
对于每一个祖先,它的编号一定大于它的所有儿子。
我们从大到小来枚举所有编号(这里指相对大小)。
令dp[i]表示i这个状态的节点可以得到的最大乘积。
有dp[i]可以转移到dp[i+j],其中j这个状态仅有一个节点,并且那个节点的权值是可以算出来的。
令f[i]表示i这个状态的节点全部向根染色后最终会有多少点被染色。
通过树形DP就能求出权值了。
最大乘积可以通过对数转化为加法来判断,就可以避免高精度了。
代码
# include<bits/stdc++.h>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-8
# define MOD 1000000007
# define INF 1000000000
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(register int i=a; i<=n; ++i)
# define FDR(i,a,n) for(register int i=a; i>=n; --i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
inline char nc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int Scan(){
char ch=nc();int sum=0, f=1;
if (ch=='-') f=-1, ch=nc();
while(!(ch>='0'&&ch<='9'))ch=nc();
while(ch>='0'&&ch<='9')sum=sum*10+ch-48,ch=nc();
return sum*f;
}
const int N=100005;
//Code begin....
struct Node{int head, tail;}node[N];
struct Dp{LL ans; double x;}dp[(1<<20)+5];
int f[1<<20], dep[N], p, nxt[1<<20];
VI g[N];
void dfs(int x, int fa){
dep[x]=dep[fa]+1;
int num=0;
for (auto i=g[x].begin(); i!=g[x].end(); ++i) {
if (*i==fa) continue;
dfs(*i,x); ++num;
if (num==1) node[x].head=node[*i].head, node[x].tail=node[*i].tail;
else {
int now=0;
for (int j=node[x].head; j; j=nxt[j]) for (int k=node[*i].head; k; k=nxt[k]) {
f[j^k]=f[j]+f[k]-dep[x]; nxt[now]=j^k; now=j^k;
}
nxt[node[x].tail]=node[*i].head; nxt[node[*i].tail]=nxt[0]; node[x].tail=now;
}
}
if (num==0) f[1<<p]=dep[x], node[x].head=node[x].tail=1<<p, ++p;
}
int main ()
{
int n=Scan(), u, v;
FOR(i,1,n-1) u=Scan(), v=Scan(), g[u].pb(v), g[v].pb(u);
dfs(1,0);
int top=1<<p;
FOR(i,0,top-1) {
dp[i].ans=1;
FOR(j,0,p-1) if ((i>>j)&1) {
if (dp[i].x<dp[i^(1<<j)].x+log(n-f[i]+1)) {
dp[i].x=dp[i^(1<<j)].x+log(n-f[i]+1);
dp[i].ans=dp[i^(1<<j)].ans*(n-f[i]+1)%MOD;
}
}
}
printf("%lld\n",dp[top-1].ans);
return 0;
}
51nod 1673 树有几多愁(链表维护树形DP+状压DP)的更多相关文章
- 51nod 1673 树有几多愁——虚树+状压DP
题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1673 建一个虚树. 一种贪心的想法是把较小的值填到叶子上,这样一个小值限制到的 ...
- 51nod 1673 树有几多愁
lyk有一棵树,它想给这棵树重标号. 重标号后,这棵树的所有叶子节点的值为它到根的路径上的编号最小的点的编号. 这棵树的烦恼值为所有叶子节点的值的乘积. lyk想让这棵树的烦恼值最大,你只需输出最大烦 ...
- 【BZOJ2595_洛谷4294】[WC2008]游览计划(斯坦纳树_状压DP)
上个月写的题qwq--突然想写篇博客 题目: 洛谷4294 分析: 斯坦纳树模板题. 简单来说,斯坦纳树问题就是给定一张有边权(或点权)的无向图,要求选若干条边使图中一些选定的点连通(可以经过其他点) ...
- 刷题总结——树有几多愁(51nod1673 虚树+状压dp+贪心)
题目: lyk有一棵树,它想给这棵树重标号. 重标号后,这棵树的所有叶子节点的值为它到根的路径上的编号最小的点的编号. 这棵树的烦恼值为所有叶子节点的值的乘积. lyk想让这棵树的烦恼值最大,你只需输 ...
- 【62测试】【状压dp】【dfs序】【线段树】
第一题: 给出一个长度不超过100只包含'B'和'R'的字符串,将其无限重复下去. 比如,BBRB则会形成 BBRBBBRBBBRB 现在给出一个区间[l,r]询问该区间内有多少个字符'B'(区间下标 ...
- luogu4294 [WC2008]游览计划(状压DP/斯坦纳树)
link 题目大意:给定一个网格图,有些点是关键点,选择格点有代价,求把所有关键点联通的最小代价 斯坦纳树模板题 斯坦纳树问题:给定一个图结构,有一些点是关键点,求把这些关键点联通的最小代价e 斯坦纳 ...
- [WC2008]游览计划 状压DP,斯坦纳树
---题面--- 题解: 这是一道斯坦纳树的题,用状压+spfa来解决 什么是斯坦纳树? 一开始还以为是数据结构来着,其实跟最小生成树很像,大致就是最小生成树只能在各个点之间直接相连,而斯坦纳树则允许 ...
- 7月15日考试 题解(链表+状压DP+思维题)
前言:蒟蒻太弱了,全打的暴力QAQ. --------------------- T1 小Z的求和 题目大意:求$\sum\limits_{i=1}^n \sum\limits_{j=i}^n kth ...
- bzoj 4006 [JLOI2015]管道连接(斯坦纳树+状压DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4006 [题意] 给定n点m边的图,连接边(u,v)需要花费w,问满足使k个点中同颜色的 ...
随机推荐
- Python开发简单爬虫
简单爬虫框架: 爬虫调度器 -> URL管理器 -> 网页下载器(urllib2) -> 网页解析器(BeautifulSoup) -> 价值数据 Demo1: # codin ...
- Git与TortoiseGit基本操作
Git与TortoiseGit基本操作 1. GitHub操作 本节先简单介绍 git 的使用与操作, 然后再介绍 TortoiseGit 的使用与操作. 先看看SVN的操作吧, 最常见的是 检出(C ...
- 大数据入门第二十三天——SparkSQL(二)结合hive
一.SparkSQL结合hive 1.首先通过官网查看与hive匹配的版本 这里可以看到是1.2.1 2.与hive结合 spark可以通过读取hive的元数据来兼容hive,读取hive的表数据,然 ...
- jQuery.bsgrid
http://thebestofyouth.com/bsgrid/ 支持json.xml数据格式,皮肤丰富并且容易定制,支持表格编辑.本地数据.导出参数构建等实用便捷的功能,容易扩展,更拥有丰富的示例 ...
- # 2017-2018-2 20155319『网络对抗技术』Exp7:网络欺诈防范
2017-2018-2 20155319『网络对抗技术』Exp7:网络欺诈防范 一.原理与实践说明 1.实践目标 本实践的目标是:理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法. 2. ...
- 复选框、单选框 jquery判断是否选中Demo
<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="eachcheckbox.a ...
- mysql存储blob限制
一.Mysql存储类型分类: 1.blob:二进制大对象(字节流),可以用来存储图片.视频等,没有字符集的说法 2.text:文本大对象(字符流),存储大型字串,有字符集的说法 3.二者使用时不能指定 ...
- C语言学习之结构体
前言 一直以来,C语言的学习都在入门阶段,只用到数组.函数.循环.选择.位运算这些基本的知识,较少用到指针.预处理.结构体.枚举类型.文件操作等这些C语言的精髓内容,现在想想真不敢说自己熟练掌握C语言 ...
- libgdx自制简易Flappy Bird
Flappy Bird,好吧,无需多说.今天年初不知咋的,一下子就火了,而且直接跃居榜首,在ios和android平台都是如此,实在难以理解.传说其作者每天收入能达到5w刀,着实碉堡了... 好吧,咱 ...
- Asp.Net_上传文件(ftp、webClient、webService)
第一种:通过FTP来上传文件 首先,在另外一台服务器上设置好FTP服务,并创建好允许上传的用户和密码,然后,在ASP.NET里就可以直接将文件上传到这台 FTP 服务器上了.代码如下: <%@ ...