【刷题】LOJ 6001 「网络流 24 题」太空飞行计划
题目描述
W 教授正在为国家航天中心计划一系列的太空飞行。每次太空飞行可进行一系列商业性实验而获取利润。现已确定了一个可供选择的实验集合 \(E = \{ E_1, E_2, \cdots, E_m \}\) ,和进行这些实验需要使用的全部仪器的集合 \(I = \{ I_1, I_2, \cdots, I_n \}\) 。实验 \(E_j\) 需要用到的仪器是 \(I\) 的子集 \(R_j \subseteq I\) 。
配置仪器 \(I_k\)k 的费用为 \(c_k\) 美元。实验 \(E_j\) 的赞助商已同意为该实验结果支付 \(p_j\) 美元。W 教授的任务是找出一个有效算法,确定在一次太空飞行中要进行哪些实验并因此而配置哪些仪器才能使太空飞行的净收益最大。这里净收益是指进行实验所获得的全部收入与配置仪器的全部费用的差额。
对于给定的实验和仪器配置情况,编程找出净收益最大的试验计划。
输入格式
第 \(1\) 行有 \(2\) 个正整数 \(m\) 和 \(n\) 。\(m\) 是实验数,\(n\) 是仪器数。接下来的 \(m\) 行,每行是一个实验的有关数据。第一个数赞助商同意支付该实验的费用;接着是该实验需要用到的若干仪器的编号。最后一行的 \(n\) 个数是配置每个仪器的费用。
输出格式
第 \(1\) 行是实验编号,第 \(2\) 行是仪器编号,最后一行是净收益。
样例
样例输入
2 3
10 1 2
25 2 3
5 6 7
样例输出
1 2
1 2 3
17
数据范围与提示
\(1 \leq n, m \leq 50\)
题解
最大权闭合图问题
将源点与实验相连,容量为利益,器材与汇点相连,容量为负的费用
实验与器材连 \(inf\) 的边,代表如果要做这个实验,就必须要有器材
然后跑最小割,用开始的利益和减去代价就是答案
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=100+10,MAXM=10200+10,inf=0x3f3f3f3f;
int n,m,s,t,beg[MAXN],cur[MAXN],vis[MAXN],clk,level[MAXN],nex[MAXM<<1],to[MAXM<<1],cap[MAXM<<1],ans,e=1,all;
std::queue<int> q;
template<typename T> inline bool read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
if(ch!=' ')return true;
else return false;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
}
inline bool bfs()
{
memset(level,0,sizeof(level));
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&!level[to[i]])level[to[i]]=level[x]+1,q.push(to[i]);
}
return level[t];
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
int res=0;
vis[x]=clk;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+1)
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
maxflow-=f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline int Dinic()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
inline void BFS()
{
q.push(s);
vis[s]=1;
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&!vis[to[i]])vis[to[i]]=1,q.push(to[i]);
}
}
int main()
{
read(n);read(m);
s=n+m+1,t=s+1;
for(register int i=1;i<=n;++i)
{
int x;read(x);insert(s,i,x);all+=x;
while(!read(x))insert(i,x+n,inf);
insert(i,x+n,inf);
}
for(register int i=1,x;i<=m;++i)read(x),insert(i+n,t,x);
ans=Dinic();
BFS();
for(register int i=1;i<=n;++i)
if(vis[i])write(i,' ');
puts("");
for(register int i=1;i<=m;++i)
if(vis[i+n])write(i,' ');
puts("");
write(all-ans,'\n');
return 0;
}
【刷题】LOJ 6001 「网络流 24 题」太空飞行计划的更多相关文章
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
- LibreOJ #6001. 「网络流 24 题」太空飞行计划 最大权闭合图
#6001. 「网络流 24 题」太空飞行计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测 ...
- Luogu 2762 太空飞行计划 / Libre 6001 「网络流 24 题」太空飞行计划 (网络流,最大流)
Luogu 2762 太空飞行计划 / Libre 6001 「网络流 24 题」太空飞行计划 (网络流,最大流) Description W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行 ...
- [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划
[luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...
- [LOJ#6002]「网络流 24 题」最小路径覆盖
[LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是 ...
- loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...
- loj #6013. 「网络流 24 题」负载平衡
#6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...
- loj #6122. 「网络流 24 题」航空路线问题
#6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...
- loj #6121. 「网络流 24 题」孤岛营救问题
#6121. 「网络流 24 题」孤岛营救问题 题目描述 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩.瑞恩被关押在一个迷宫里,迷宫地形复杂, ...
随机推荐
- 批量下载,多文件压缩打包zip下载
0.写在前面的话 图片批量下载,要求下载时集成为一个压缩包进行下载.从昨天下午折腾到现在,踩坑踩得莫名其妙,还是来唠唠,给自己留个印象的同时,也希望给需要用到这个方法的人带来一些帮助. 1.先叨叨IO ...
- Django进阶(2)
1.在D盘创建mysite工程项目: django-admin startproject mysite manage.py ----- Django项目里面的工具,通过它可以调用django she ...
- 利用Cydia Substrate进行Android HOOK
Cydia Substrate是一个代码修改平台.它可以修改任何主进程的代码,不管是用Java还是C/C++(native代码)编写的.而Xposed只支持HOOK app_process中的java ...
- 20155330 《网络对抗》 Exp8 Web基础
20155330 <网络对抗> Exp8 Web基础 实验问题回答 什么是表单 表单可以收集用户的信息和反馈意见,是网站管理者与浏览者之间沟通的桥梁. 一个表单有三个基本组成部分 表单标签 ...
- SVD(奇异值分解)Python实现
注:在<SVD(奇异值分解)小结 >中分享了SVD原理,但其中只是利用了numpy.linalg.svd函数应用了它,并没有提到如何自己编写代码实现它,在这里,我再分享一下如何自已写一个S ...
- mfc 线程的诞生和死亡
知识点: 线程概念 线程的诞生 线程的死亡 一. 线程: 线程,是程序执行流的最小单元. 另外,线程是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不拥有系统资源,只拥有一点 ...
- 4、Docker数据管理
一.挂载类型 1.volumes Docker管理宿主机文件系统的一部分(/var/lib/docker/volumes).保存数据的最佳方式. 使用场景:将容器中的数据持久化到宿主机,比如容器是my ...
- 架构师修炼 II - 表达思维与驾驭方法论
开篇之前我想先说说当年开发的那点事儿:大约10年前吧,我还是一个程序员的时候经常都是遇到这样的项目开发流程: 解决方案 :满足客户目的和投标用的一堆文档(不少还是互联网上抄的) ,是以Word为主的纯 ...
- 余玄相似度,TF-IDF
能干什么? 文章去重,语句去重,提取关键词(文章摘要,页面指纹),图片识别,语音识别 想要做一个相似度,最重要的是什么? 必须得到一个度量:计算个体之间的相似程度(分数,0-1之间,0代表完全不同,一 ...
- Salesforce随笔: 将Visualforce Page渲染为PDF文件(Render a Visualforce Page as a PDF File)
参照 : Visualforce Developer Guide 第60页 <Render a Visualforce Page as a PDF File> 你可以用PDF渲染服务生成一 ...