bzoj1923,戳我戳我

Solution:

  • 这个高斯消元/线性基很好看出来,主要是判断在第K 次统计结束后就可以确定唯一解的地方和\(bitset\)的骚操作
  • (我用的线性基)判断位置,我们可以每次加入一个线性基时判断是不是全被异或掉了,如果没有,说明这个方程不是冗余的,那么我们可记录非冗余方程个数
  • 如果非冗余方程个数小于\(n\),那就是个不定方程组,有无数种解,否则,在个数第一次达到\(n\)时,就可输出当时输入方程的号码
  • 还有一个点就是压空间与时间,这题主要是时间,用到大杀器\(bitset\),具体看,这位辽宁省队巨佬的博客吧

Code:

//It is coded by Ning_Mew on 5.29
#include<bits/stdc++.h>
using namespace std; const int maxn=1e3+7,maxm=2e3+7; int n,m;
int ans[maxn],tot=0;
bitset<maxn>x[maxn];
string s;
bool pr; void push(bitset<maxn>S){
for(int i=n-1;i>=0;i--){
if(S[i]){
if(x[i][i]){S=(S^x[i]);}
else {x[i]=S;tot++;return;}
}
}
}
int main(){
scanf("%d%d",&n,&m);
if(m<n){printf("Cannot Determine\n");return 0;}
pr=false;
for(int i=1;i<=m;i++){
cin>>s; bitset<maxn>S(s);
cin>>s; if(s[0]=='1')S.flip(n);
//cout<<i<<":"<<S[0]<<' '<<S[1]<<' '<<S[2]<<' '<<S[3]<<endl;
push(S);if(tot==n&&!pr)pr=true,printf("%d\n",i);
}
if(tot<n){printf("Cannot Determine\n");return 0;}
for(int i=n-1;i>=0;i--){
for(int j=i-1;j>=0;j--){
if(x[i][j]){x[i]=(x[i]^x[j]);}
}
if(x[i][n])printf("?y7M#\n");
else printf("Earth\n");
}
return 0;
}

博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/Ning-Mew/,否则你会终生找不到妹子!!!

【题解】 bzoj1923: [Sdoi2010]外星千足虫 (线性基/高斯消元)的更多相关文章

  1. [bzoj 2844]线性基+高斯消元

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2844 又用到线性基+高斯消元的套路题了,因为经过高斯消元以后的线性基有非常好的序关系,所以 ...

  2. bzoj千题计划188:bzoj1923: [Sdoi2010]外星千足虫 (高斯—若尔当消元法解异或方程组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1923 #include<cstdio> #include<cstring> ...

  3. BZOJ1923:[SDOI2010]外星千足虫(高斯消元)

    Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结果.每行 包含一个“01”串和一个数字,用一个空格隔开.“01 ...

  4. BZOJ1923 [Sdoi2010]外星千足虫 【高斯消元】

    题目 输入格式 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用"点足机"的统计结果.每行 包含一个"01"串和一个数字,用 ...

  5. bzoj1923[Sdoi2010]外星千足虫(高斯消元)

    Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结果.每行 包含一个“01”串和一个数字,用一个空格隔开.“01 ...

  6. 【bzoj4004】【JLOI2015】装备购买 (线性基+高斯消元)

    Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 < ...

  7. Codeforces.472F.Design Tutorial: Change the Goal(构造 线性基 高斯消元)

    题目链接 \(Description\) 给定两个长为\(n\)的数组\(x_i,y_i\).每次你可以选定\(i,j\),令\(x_i=x_i\ \mathbb{xor}\ x_j\)(\(i,j\ ...

  8. [hdu 3949]线性基+高斯消元

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 一开始给做出来的线性基wa了很久,最后加了一步高斯消元就过了. 之所以可以这样做,证明如下. 首 ...

  9. 洛谷P3265 [JLOI2015]装备购买(线性基+高斯消元)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 不难看出题目讲的就是线性基 这种最小化权值的问题一般都是贪心的,就是按价值从低到高考虑每一个是否能选 据说贪心的证明得用拟阵我不会 据说这题是实数意 ...

随机推荐

  1. Liunx-mkdir命令

    1. 新建一个文件夹 one 2. 新建三个文件夹three,four,five 3. 新建一个多层级文件夹 201904/a/01

  2. 20155209 Exp5 MSF基础应用

    Exp5 MSF基础应用 实验准备 在实验之前,上网搜集了很多有关Metasploit渗透测试的资料.对这次实验影响最大的是一篇最受欢迎的10个Metasploit模块和插件.排名第一位的是MSB-M ...

  3. 《Flask Web开发实战:入门、进阶与原理解析(李辉著 )》PDF+源代码

    一句话评价: 这可能是市面上(包括国外出版的)你能找到最好的讲Flask的书了 下载:链接: https://pan.baidu.com/s/1ioEfLc7Hc15jFpC-DmEYBA 提取码: ...

  4. mfc 嵌套类

    嵌套类 一. 嵌套类 嵌套类的定义 将某个类的定义放在另一个类的内部,这样的类定义,叫嵌套类. class AAA { int aaa; class BBB { int bbb; //其它成员或者函数 ...

  5. mfc 基类与子类

    基类(父类) 派生类(子类) 一.基类(父类) 基类(又称为父类,基类与派生类是相对的关系! 通过继承机制,可以利用已有的数据类型来定义新的数据类型.所定义的新的数据类型不仅拥有新定义的成员,而且还同 ...

  6. CDH上Cloudera Management Service 各个角色迁移至其他节点

    1.首先查看Cloudera Management Service下有哪些服务,cdh版本为5.9.2: 可以看到基本上有以上6个角色: 2.停止所有角色,并执行删除: 3.找到集群中另外一个节点,添 ...

  7. 设计模式 笔记 单例模式 Singleton

    //---------------------------15/04/09---------------------------- //Singleton 单例模式-----对象创建型模式 /* 1: ...

  8. 【Android UI设计与开发】第03期:引导界面(三)仿微信引导界面以及动画效果

    基于前两篇比较简单的实例做铺垫之后,这一篇我们来实现一个稍微复杂一点的引导界面的效果,当然也只是稍微复杂了一点,对于会的人来说当然还是so easy!正所谓会者不难,难者不会,大概说的就是这个意思了吧 ...

  9. CSS 背景实例

    CSS 背景属性属性 描述background 简写属性,作用是将背景属性设置在一个声明中.background-attachment 背景图像是否固定或者随着页面的其余部分滚动.background ...

  10. docker之容器管理

    一.docker常用的创建命令 [root@node03 ~]# docker create --help [root@node03 ~]# docker run --help OPTIONS说明: ...