Description

图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨。

这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使取出的点尽量多。

小D虽然图论很弱,但是也知道无向图最大独立集是npc,但是小C很仁慈的给了一个很有特点的图: 图中任何一条边属于且仅属于一个简单环,图中没有重边和自环。小C说这样就会比较水了。

小D觉得这个题目很有趣,就交给你了,相信你一定可以解出来的。

Input

第一行,两个数n, m,表示图的点数和边数。

第二~m+1行,每行两个数x,y,表示x与y之间有一条无向边。

Output

输出这个图的最大独立集。

Sample Input

5 6

1 2

2 3

3 1

3 4

4 5

3 5

Sample Output

2

HINT

100% n <=50000, m<=60000

Solution

【刷题】BZOJ 1487 [HNOI2009]无归岛的弱化版,相当于点权为1

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=50000+10,MAXM=60000+10,inf=0x3f3f3f3f;
int n,m,e,to[MAXM<<1],nex[MAXM<<1],beg[MAXN],DFN[MAXN],LOW[MAXN],f[MAXN][2],g[MAXN][2],ex[2],ans,a[MAXN],cnt,fa[MAXN],Visit_Num;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline void loop(int root,int x)
{
a[cnt=1]=x;
for(register int i=x;i!=root;i=fa[i])a[++cnt]=fa[i];
g[x][0]=f[x][0],g[x][1]=-inf;
for(register int i=2;i<=cnt;++i)
{
g[a[i]][0]=f[a[i]][0]+max(g[a[i-1]][0],g[a[i-1]][1]);
g[a[i]][1]=f[a[i]][1]+g[a[i-1]][0];
}
ex[0]=g[root][0],ex[1]=g[root][1];
g[x][1]=f[x][1],g[x][0]=f[x][0];
for(register int i=2;i<=cnt;++i)
{
g[a[i]][0]=f[a[i]][0]+max(g[a[i-1]][0],g[a[i-1]][1]);
g[a[i]][1]=f[a[i]][1]+g[a[i-1]][0];
}
chkmax(ex[0],g[root][0]);
f[root][0]=ex[0],f[root][1]=ex[1];
}
inline void Tarjan(int x,int p)
{
DFN[x]=LOW[x]=++Visit_Num;fa[x]=p;
f[x][1]=1;f[x][0]=0;
for(register int i=beg[x];i;i=nex[i])
if(to[i]==p)continue;
else if(!DFN[to[i]])
{
Tarjan(to[i],x);
chkmin(LOW[x],LOW[to[i]]);
if(LOW[to[i]]>DFN[x])
{
f[x][0]+=max(f[to[i]][1],f[to[i]][0]);
f[x][1]+=f[to[i]][0];
}
}
else if(DFN[to[i]]<DFN[x])chkmin(LOW[x],DFN[to[i]]);
for(register int i=beg[x];i;i=nex[i])
if(to[i]==p)continue;
else if(fa[to[i]]!=x&&LOW[to[i]]<=DFN[x]&&DFN[to[i]]>DFN[x])loop(x,to[i]);
}
int main()
{
read(n);read(m);
for(register int i=1;i<=m;++i)
{
int u,v;read(u);read(v);
insert(u,v);insert(v,u);
}
for(register int i=1;i<=n;++i)
if(!DFN[i])Tarjan(i,0),ans+=max(f[i][0],f[i][1]);
printf("%d\n",ans);
return 0;
}

【刷题】BZOJ 4316 小C的独立集的更多相关文章

  1. BZOJ 4316: 小C的独立集 解题报告

    4316: 小C的独立集 Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点, ...

  2. BZOJ 4316: 小C的独立集 仙人掌 + 树形DP

    4316: 小C的独立集 Time Limit: 10 Sec  Memory Limit: 128 MB Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. ...

  3. BZOJ 4316: 小C的独立集

    4316: 小C的独立集 思路:先将树上的转移做好.然后环上的转移就是强制最上面的的点选或者不选,然后在环上跑一遍转移就可以了. 代码: #pragma GCC optimize(2) #pragma ...

  4. BZOJ.4316.小C的独立集(仙人掌 DP)

    题目链接 \(Description\) 求一棵仙人掌的最大独立集. \(Solution\) 如果是树,那么 \(f[i][0/1]\) 表示当前点不取/取的最大独立集大小,直接DP即可,即 \(f ...

  5. bzoj 4316: 小C的独立集【仙人掌dp】

    参考:https://www.cnblogs.com/clrs97/p/7518696.html 其实和圆方树没什么关系 设f[i][j][k]为i点选/不选,这个环的底选不选 这个底的定义是设u为这 ...

  6. 【BZOJ】4316: 小C的独立集 静态仙人掌

    [题意]给定仙人掌图,求最大独立集(选择最大的点集使得点间无连边).n<=50000,m<=60000. [算法]DFS处理仙人掌图 [题解]参考:[BZOJ]1023: [SHOI200 ...

  7. C#LeetCode刷题之#453-最小移动次数使数组元素相等(Minimum Moves to Equal Array Elements)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3877 访问. 给定一个长度为 n 的非空整数数组,找到让数组所有 ...

  8. C#LeetCode刷题之#155-最小栈(Min Stack)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4020 访问. 设计一个支持 push,pop,top 操作,并能 ...

  9. 【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集

    4316: 小C的独立集 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 57  Solved: 41[Submit][Status][Discuss] ...

随机推荐

  1. Hadoop、Yarn和vcpu资源的配置

    转载自:https://www.cnblogs.com/S-tec-songjian/p/5740691.html Hadoop  YARN同时支持内存和CPU两种资源的调度(默认只支持内存,如果想进 ...

  2. ABC Tech Day(2018.08.11)

    时间:2018.07.24地点:北京中关村创业大街车库咖啡

  3. libgdx学习记录8——对话框Dialog

    Dialog在游戏中也很常用,尤其在设置.退出.商店.暂停等画面.Dialog的使用也可以通过skin实现,也可以自定义. 下面是一个简单的实例: package com.fxb.newtest; i ...

  4. JQuery快速入门-Ajax

    一.AJAX概述 概念:AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). 优点:通过在后台与服务器进行少量数据交换,AJAX ...

  5. Azure SQL Database Active Geo-Replication 简介

    对于数据库的维护来说,备份工作可谓是重中之重.MS Azure 当然也提供了很完善的数据库备份功能.但是在动手创建备份计划前请思考一下备份工作的真实目的.当然首先要保证数据的安全,一般来说定时创建数据 ...

  6. Linux删除多余内核

    查看已安装内核 sudo dpkg --get-selections |grep linux-image 查看当前内核 uname -r 卸载内核 sudo apt-get remove 内核名称 配 ...

  7. 简单模拟flume

    NetCat方式: 远程访问的方式进行消息传递 配置一个Agent,主要配置三个组件: source, channel, sink 上图中为什么channel会带s,变成channels? 可以绑定多 ...

  8. PAT甲题题解-1009. Product of Polynomials (25)-多项式相乘

    多项式相乘 注意相乘结果的多项式要开两倍的大小!!! #include <iostream> #include <cstdio> #include <algorithm& ...

  9. 右键添加使用Sublime打开

    网上教程大多是教你怎么改注册表,有点麻烦. 我根据教程改完之后导出来供大家使用,更方便快捷. Windows Registry Editor Version 5.00 [HKEY_CLASSES_RO ...

  10. Linux内核分析 实验一 ——by王玥

    一.实验内容 1)实验部分(以下命令为实验楼64位Linux虚拟机环境下适用,32位Linux环境可能会稍有不同) 使用 gcc –S –o main.s main.c -m32 命令编译成汇编代码, ...