【BZOJ2067】SZN(二分,动态规划,贪心)

题面

权限题额

Description

String-Toys joint-stock 公司需要你帮他们解决一个问题. 他们想制造一个没有环的连通图模型. 每个图都是由一些顶点和特定数量的边构成. 每个顶点都可以连向许多的其他顶点.一个图是连通且无环的. 图是由许多的线做成的.一条线是一条连接图中两个顶点之间的路径.由于一些技术原因,两条线之间不能有重叠的部分,要保证图中任意一条边都被且仅被一条线所覆盖.由于一些技术原因,做一个这样的图的模型的费用取决于用了多少条线以及最长的那条的长度. (每条边的长度都为1.),给出对应的图,求出最少能用多少条线以及在用最少线的情况下最长的那根线最短可以为多少.

Input

第一行仅包含一个数n – 顶点的总数, 2 <= n <= 10 000. 顶点从1 到 n进行编号. 接下来的n - 1 行描述这些边, 每行两个数a 和 b, 1 <= a, b <= n, a <> b. 表示顶点a和顶点b之间有一条边.

Output

输出两个数,最少用多少条线以及在用最少线的情况下最长线最短可以为多少.

Sample Input

9

7 8

4 5

5 6

1 2

3 2

9 8

2 5

5 8

Sample Output

4 2

题解

首先第一问答案是\(1+\sum (d_i-1)/2\),其中\(d_i\)是\(i\)的度数。这个东西你可以认为是每个节点的所有儿子两两配对,而多出来的部分则可以延伸到父亲上面去继续做。

那么只需要考虑第二问。我们二分一个答案,设\(f[i]\)表示可以向上延伸的最小长度,那么每次对于一个点,把它的所有儿子拿出来排个序,看看延伸上去的最少长度是多少。

当然,这里要分奇偶性来看。如果一个点的儿子数是奇数,那么我们排序之后二分最小的那个延伸上去的儿子。如果是偶数,我们先尝试两两配对,如果不合法那么再考虑一下前面的式子,允许有一个儿子可以延伸到父亲去,而偶数的贡献则只需要匹配儿子数/2-1对,所以可以直接把最大值去掉再当成奇数尝试匹配。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 10010
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1,dg[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int n,ans=1,f[MAX],mid;
int S[MAX],top,vis[MAX];bool fl;
void dfs(int u,int ff)
{
if(!fl)return;
for(int i=h[u];i;i=e[i].next)
if(e[i].v!=ff)dfs(e[i].v,u);
top=f[u]=0;
for(int i=h[u];i;i=e[i].next)
if(e[i].v!=ff)S[++top]=f[e[i].v]+1;
sort(&S[1],&S[top+1]);
if(!top)return;
if(S[top]>mid){fl=false;return;}
if(top%2==0)
{
for(int i=1;i<=top/2;++i)
if(S[i]+S[top-i+1]>mid)
{
if(u!=1){--top;break;}
fl=false;return;
}
}
if(top%2==1)
{
int l=1,r=top,ret=top+1;
while(l<=r)
{
int Mid=(l+r)>>1;bool chk=true;
for(int i=1,j=top;;++i,--j)
{
if(i==Mid)++i;if(j==Mid)--j;
if(i>=j)break;
if(S[i]+S[j]>mid){chk=false;break;}
}
if(chk)ret=Mid,r=Mid-1;
else l=Mid+1;
}
if(ret>top){fl=false;return;}
else f[u]=S[ret];
}
}
int main()
{
n=read();
for(int i=1;i<n;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
dg[u]++;dg[v]++;
}
for(int i=1;i<=n;++i)ans+=(dg[i]-1)/2;
int l=1,r=n,ret=1;
while(l<=r)
{
mid=(l+r)>>1;fl=true;
dfs(1,0);memset(vis,0,sizeof(vis));
if(fl)ret=mid,r=mid-1;
else l=mid+1;
}
printf("%d %d\n",ans,ret);
return 0;
}

【BZOJ2067】SZN(二分,动态规划,贪心)的更多相关文章

  1. 【BZOJ2067】[Poi2004]SZN 二分+树上贪心

    [BZOJ2067][Poi2004]SZN Description String-Toys joint-stock 公司需要你帮他们解决一个问题. 他们想制造一个没有环的连通图模型. 每个图都是由一 ...

  2. $bzoj2067\ szn$ 二分+贪心

    正解:二分+贪心 解题报告: 传送门$QwQ$ 题目大意就说有一棵树,然后要用若干条线覆盖所有边且不能重叠.问最少要用几条线,在用线最少的前提下最长的线最短是多长. 昂首先最少用多少条线这个还是蛮$e ...

  3. CodeForces - 363D --二分和贪心

    题目:CodeForces - 363D 题意:给定n个学生,其中每个学生都有各自的私己钱,并且自己的私己钱只能用在自己买自行车,不能给别人. 给定m个自行车,每个自行车都有一个价格. 给定公有财产a ...

  4. 【BZOJ1816】[CQOI2010]扑克牌(二分,贪心)

    [BZOJ1816][CQOI2010]扑克牌(二分,贪心) 题面 BZOJ 题解 看了一眼这题,怎么这么眼熟?woc,原来\(xzy\)的题目是搬的这道啊... 行,反正我考的时候也切了,这数据范围 ...

  5. Luogu 1084 NOIP2012 疫情控制 (二分,贪心,倍增)

    Luogu 1084 NOIP2012 疫情控制 (二分,贪心,倍增) Description H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树, 1 号城市是首都, 也是 ...

  6. hdu 4004 (二分加贪心) 青蛙过河

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4004 题目意思是青蛙要过河,现在给你河的宽度,河中石头的个数(青蛙要从石头上跳过河,这些石头都是在垂 ...

  7. BZOJ_2196_[Usaco2011 Mar]Brownie Slicing_二分答案+贪心

    BZOJ_2196_[Usaco2011 Mar]Brownie Slicing_二分答案+贪心 Description Bessie烘焙了一块巧克力蛋糕.这块蛋糕是由R*C(1 <= R,C ...

  8. 洛谷3933 Chtholly Nota Seniorious 二分答案+贪心

    题目链接 题意 给你一个N*M的矩阵 (N,M <=2000)  把他分成两部分 使两部分的极差较大的一个最小  求这个最小值.然后分矩阵的要求是:每个部分内部的方块之间,可以通过上下左右相互到 ...

  9. BZOJ2151 种树(贪心+堆+链表/wqs二分+动态规划)

    dp容易想到,但没法进一步优化了. 考虑贪心,每次选出价值最大的物品.但这显然是不对的因为会影响其他物品的选择. 于是考虑加上反悔操作.每次选出一个物品后,将其相邻两物品删除,再将原物品价值变为相邻两 ...

  10. bzoj 2067 [Poi2004]SZN——二分+贪心

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2067 最少的线段可以贪心地想出来.(结果还是写错了)就是偶数孩子可以自己配对,奇数孩子要带一 ...

随机推荐

  1. 报错Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA

    解决方法:import os                  os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'输入1:显示所有信息 2:只显示warning和erro ...

  2. 使用selenium进行自动化测试

    selenium 支持多个客户端:ruby,Java,python.可以用来对网页进行全面测试,支持真实浏览器测试. firefox IE chrome safari 支持多操作系统: Linux w ...

  3. JavaScript中call,apply,bind方法的区别

    call,apply,bind方法一般用来指定this的环境. var a = { user:"hahaha", fn:function(){ console.log(this.u ...

  4. pycharm如何在虚拟环境中引入别人的项目

    如果你想引入别人的项目,但是呢引入的项目可能与自己原先装的模块的版本产生冲突,而且如果引入一个项目就在本地进行运行使用,每个项目用的依赖包都不大相同,就会导致解释器安装包过多,就会导致加载过慢,甚至会 ...

  5. 【亲测有效】Win10家庭版Microsoft Edge页面出现乱码的两种解决方案及gpedit.msc命令无法使用的解决策略

    昨天在爬取电影的时候生成的表单打开result.html时,发现页面出现如下乱码: 第一种方法: 上网找了半天,网上的解决方案是这样的: 1.Win + R输入gpedit.msc打开组策略编辑器; ...

  6. 虚拟机virtualBox安装linux系统 xshell远程连接linux

    虚拟机virtualBox安装linux系统 xshell远程连接linux 虚拟机概念: 通过软件, 使用虚拟化技术虚拟出电脑的硬件环境, 充当真实的电脑使用. 常见的虚拟软件: virtualBo ...

  7. 【转载】kafka 基础知识

    1.       kafka介绍 1.1.       主要功能 根据官网的介绍,ApacheKafka®是一个分布式流媒体平台,它主要有3种功能: 1:It lets you publish and ...

  8. MiniNet自定义拓扑

    SDN 与 Mininet 概述 SDN 全名为(Software Defined Network)即软件定义网络,是现互联网中一种新型的网络创新架构,其核心技术 OpenFlow 通过网络设备控制面 ...

  9. PTA (Advanced Level) 1002 A+B for Polynomials

    1002 A+B for Polynomials This time, you are supposed to find A+B where A and B are two polynomials. ...

  10. 初次接触OSSEC

    OSSEC是一款开源的系统监控平台.它集成了HIDS(主机入侵检测).日志监控.安全事件管理(SIM).安全信息和事件管理(SIEM)于一身,结构简单.功能强大的开源解决方案. 主要优点 满足合规性 ...