The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.

Input Specification:

Each input file contains one test case which gives in a line the three positive integers N (≤), K (≤) and P (1). The numbers in a line are separated by a space.

Output Specification:

For each case, if the solution exists, output in the format:

N = n[1]^P + ... n[K]^P

where n[i] (i = 1, ..., K) is the i-th factor. All the factors must be printed in non-increasing order.

Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 1, or 1, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { , } is said to be larger than { , } if there exists 1 such that a​i​​=b​i​​ for i<L and a​L​​>b​L​​.

If there is no solution, simple output Impossible.

Sample Input 1:

169 5 2

Sample Output 1:

169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2

Sample Input 2:

169 167 3

Sample Output 2:

Impossible

C++代码如下:

 #include<iostream>
#include<cmath>
#include<vector>
using namespace std; int n, k, p;
vector<int>v;
vector<int>temp,ans;
int sum_g=;
void init() {
int t;
for (int i = ; i < ; i++) {
t = pow(i, p);
if (t <= n)
v.push_back(t);
else break;
}
}
void DFS(int index, int sum, int nowk, int sumk) {
if ( nowk == k && sum == n) {
if (sumk > sum_g) {
sum_g = sumk;
ans = temp;
}
return;
}
if ( sum>n || nowk > k)return;
if (index - >= ) {
temp.push_back(index);
DFS(index , sum + v[index], nowk + , sumk + index);
temp.pop_back();
DFS(index - , sum, nowk, sumk);
}
}
int main() {
cin >> n >> k >> p;
init();
DFS(v.size() - , , , );
if (ans.size() > ) {
cout << n << " = ";
for (int i = ; i < ans.size() - ; i++)
cout << ans[i] << "^" << p << " + ";
cout << ans[ans.size() - ] << "^" << p << endl;
}
else
cout << "Impossible" << endl;
return ;
}

【PAT】1103 Integer Factorization(30 分)的更多相关文章

  1. 【PAT甲级】1103 Integer Factorization (30 分)

    题意: 输入三个正整数N,K,P(N<=400,K<=N,2<=P<=7),降序输出由K个正整数的P次方和为N的等式,否则输出"Impossible". / ...

  2. 1103 Integer Factorization (30)

    1103 Integer Factorization (30 分)   The K−P factorization of a positive integer N is to write N as t ...

  3. PAT 1103 Integer Factorization[难]

    1103 Integer Factorization(30 分) The K−P factorization of a positive integer N is to write N as the ...

  4. 1103 Integer Factorization (30)(30 分)

    The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...

  5. PAT (Advanced Level) 1103. Integer Factorization (30)

    暴力搜索. #include<cstdio> #include<cstring> #include<cmath> #include<vector> #i ...

  6. PAT甲题题解-1103. Integer Factorization (30)-(dfs)

    该题还不错~. 题意:给定N.K.P,使得可以分解成N = n1^P + … nk^P的形式,如果可以,输出sum(ni)最大的划分,如果sum一样,输出序列较大的那个.否则输出Impossible. ...

  7. 1103. Integer Factorization (30)

    The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...

  8. PAT 1103 Integer Factorization

    The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...

  9. PAT甲级——1103 Integer Factorization (DFS)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90574720 1103 Integer Factorizatio ...

  10. PAT甲级1103. Integer Factorization

    PAT甲级1103. Integer Factorization 题意: 正整数N的K-P分解是将N写入K个正整数的P次幂的和.你应该写一个程序来找到任何正整数N,K和P的N的K-P分解. 输入规格: ...

随机推荐

  1. 【题解】 bzoj1088: [SCOI2005]扫雷Mine (神奇的做法)

    bzoj1088,懒得复制,戳我戳我 Solution: 其实这个有个结论,答案只会有\(0\),\(1\),\(2\)三种(我真的是个弱鸡,这个都想不到) 然后我们假设第一个就可以推出所有的状态(显 ...

  2. CRM 常用SQL 脚本

    1. 查询角色.用户 SELECT DISTINCT DomainName,        u.FullName ,         u.FirstName,         u.InternalEM ...

  3. 面试题:get和post的本质区别

    前言:相信小伙伴们面试时候一定都遇到过这个问题,即使没有遇到过,至少也听说过,网上资料一大片,大概每个人都能说出来一些.但是总感觉面试装逼不成功,所以就翻阅了部分资料,进一步整理了下. 一般当我们提到 ...

  4. Go 语言中的方法,接口和嵌入类型

    https://studygolang.com/articles/1113 概述 在 Go 语言中,如果一个结构体和一个嵌入字段同时实现了相同的接口会发生什么呢?我们猜一下,可能有两个问题: 编译器会 ...

  5. spring.net框架配置和使用

    spring.net框架学习笔记 spring.net框架是用于解决企业应用开发的复杂性的一种容器框架,它的一大功能IOC(控制反转),通俗解释就是通过spring.net框架的容器创建对象实体,而不 ...

  6. bug4 导入新工程时报 Target runtime com.genuitec.runtime.generic.jee60 is not defined

    系统加载工程后,报错Target runtime com.genuitec.runtime.generic.jee60 is not defined,在发布工程的同事电脑上正常.新导入的工程,出问题很 ...

  7. NameError: name 'reload' is not defined

    对于 Python 2.X: import sys reload(sys) sys.setdefaultencoding("utf-8") 对于 <= Python 3.3: ...

  8. Java入门系列(九)Java API

    String,StringBuilder,StringBuffer三者的区别 1.首先说运行速度,或者说是执行速度 在这方面运行速度快慢为:StringBuilder > StringBuffe ...

  9. MySQL记录异常实体类设计

    public class LogInfo { /// <summary> /// 应用名 /// </summary> public string AppName { get; ...

  10. JS 简易控制台插件 [供 博客, 论坛 运行js用]

    今天厚着脸皮来推荐下鄙人写的一个小插件吧.看过我博客的应该都熟悉这个插件了,其实就是这货. 这东西是我去年写的,当时水平也不怎么样,不过好歹还是实现了简单功能.我先简单介绍下这东西什么用吧. 因为在 ...