题目链接:

http://poj.org/problem?id=1679

Description

Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph
G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'),
with the following properties:

1. V' = V.

2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted,
connected, undirected graph G = (V, E). The minimum spanning tree T =
(V, E') of G is the spanning tree that has the smallest total cost. The
total cost of T means the sum of the weights on all the edges in E'.

Input

The
first line contains a single integer t (1 <= t <= 20), the number
of test cases. Each case represents a graph. It begins with a line
containing two integers n and m (1 <= n <= 100), the number of
nodes and edges. Each of the following m lines contains a triple (xi,
yi, wi), indicating that xi and yi are connected by an edge with weight =
wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!

Source

 /*
问题
判断最小生成树是否唯一 解题思路
利用克鲁斯卡尔算法计算出最小花费和标记每一条边,每次删除一条标记边,再进行一次克鲁斯卡尔,如果能够生成最小生
成树而且最小代价相同,说明最小生成树不唯一,否则说明最小生成树是唯一的输出最小花费。
*/
#include<cstdio>
#include<algorithm> using namespace std; struct EDGE{
int u,v,w,f;
}edge[];
int n,m;
int fa[];
int cmp(struct EDGE a,struct EDGE b){
return a.w<b.w;
}
int kruskal1();
int kruskal2();
int merge(int u,int v);
int getf(int v);
int ok(int ans); int main()
{
int T,i;
scanf("%d",&T); while(T--){
scanf("%d%d",&n,&m);
for(i=;i<m;i++){
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
edge[i].f=;
} sort(edge,edge+m,cmp);
/*for(i=0;i<m;i++){
printf("%d %d %d %d\n",edge[i].u,edge[i].v,edge[i].w,edge[i].f);
}*/ int mina=kruskal1();
//printf("%d\n",mina); if(ok(mina))
printf("%d\n",mina);
else
printf("Not Unique!\n");
}
return ;
} int ok(int ans){
int temp,i;
for(i=;i<m;i++){
if(edge[i].f){
//printf("删去 %d 这条边\n",i);
edge[i].f=-;
temp=kruskal2();
if(temp == ans)//构成最小生成树并且最小代价相同
return ; edge[i].f=;
}
}
return ;
} int kruskal1()
{
int i;
for(i=;i<=n;i++)
fa[i]=i;
int c=,sum=; for(i=;i<m;i++){
if(merge(edge[i].u,edge[i].v)){
c++;
sum += edge[i].w;
edge[i].f=;
}
if(c == n-)
break;
}
return sum;
} int kruskal2()
{
int i;
for(i=;i<=n;i++)
fa[i]=i;
int c=,sum=; for(i=;i<m;i++){
if(edge[i].f >= && merge(edge[i].u,edge[i].v)){
//printf("使用 %d 这条边 %d %d %d\n",i,edge[i].u,edge[i].v,edge[i].w);
c++;
sum += edge[i].w;
}
if(c == n-)
break;
} if(c == n-)
return sum;
else
return -;
} int merge(int u,int v){
int t1=getf(u);
int t2=getf(v);
if(t1 != t2){
fa[t2]=t1;
return ;
}
return ;
} int getf(int v){
return fa[v] == v ? v : fa[v]=getf(fa[v]);
}

POJ 1679 The Unique MST(判断最小生成树是否唯一)的更多相关文章

  1. poj 1679 The Unique MST 判断最小生成树是否唯一(图论)

    借用的是Kruskal的并查集,算法中的一点添加和改动. 通过判定其中有多少条可选的边,然后跟最小生成树所需边做比较,可选的边多于所选边,那么肯定方案不唯一. 如果不知道这个最小生成树的算法,还是先去 ...

  2. poj 1679 The Unique MST (判定最小生成树是否唯一)

    题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total S ...

  3. POJ 1679 The Unique MST 推断最小生成树是否唯一

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22715   Accepted: 8055 D ...

  4. 【POJ 1679 The Unique MST】最小生成树

    无向连通图(无重边),判断最小生成树是否唯一,若唯一求边权和. 分析生成树的生成过程,只有一个圈内出现权值相同的边才会出现权值和相等但“异构”的生成树.(并不一定是最小生成树) 分析贪心策略求最小生成 ...

  5. POJ 1679 The Unique MST(最小生成树)

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...

  6. POJ 1679 The Unique MST (最小生成树)

    The Unique MST 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/J Description Given a conn ...

  7. POJ 1679 The Unique MST 【最小生成树/次小生成树模板】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22668   Accepted: 8038 D ...

  8. (poj)1679 The Unique MST 求最小生成树是否唯一 (求次小生成树与最小生成树是否一样)

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...

  9. poj 1679 The Unique MST 【次小生成树】【模板】

    题目:poj 1679 The Unique MST 题意:给你一颗树,让你求最小生成树和次小生成树值是否相等. 分析:这个题目关键在于求解次小生成树. 方法是,依次枚举不在最小生成树上的边,然后加入 ...

随机推荐

  1. [mysql]当mysql查询语句查询的结果为空时,返回query结果是什么类型的呢?

    php > $con = mysql_connect('localhost' , 'hnb' , 'alyHnb2015'); php > print_r($con);Resource i ...

  2. poj3253哈夫曼树

    Fence Repair Time Limit: 2000 MS Memory Limit: 65536 KB 64-bit integer IO format: %I64d , %I64u Java ...

  3. php支付宝手机网页支付类实例

    <?php $alipayConfig = array( 'key' => 'xxxxx', //买卖安全校验码,用于签名的32位密钥 'transport' => 'https', ...

  4. 深入探索AngularJS

    目录 深入探索AngularJS 作用域Scope是DOM和Directives交互的抽象 Scope是POJO对象 Scope是上下文 Scope继承树 Scope附加功能 正交功能 Element ...

  5. 用C#中的键值对遍历数组或字符串元素的次数

    代码如下: string strs = "ad6la4ss42d6s3"; Dictionary<char, int> dic = new Dictionary< ...

  6. AngularJs创建一个带参数的自定义方法

    学习这篇之前,先要从这篇<AngularJs创建自定义Service>http://www.cnblogs.com/insus/p/6773894.html 开始. 看看: app.con ...

  7. 【转】OAuth2.0的refresh token

    转载自http://www.html-js.com/?p=1297 最近看人人网的OAuth认证,发现他是OAuth2.0,之前一直看的是新浪的OAuth,是OAuth1.0. 二者还是有很多不同的, ...

  8. Spring AOP 源码分析系列文章导读

    1. 简介 前一段时间,我学习了 Spring IOC 容器方面的源码,并写了数篇文章对此进行讲解.在写完 Spring IOC 容器源码分析系列文章中的最后一篇后,没敢懈怠,趁热打铁,花了3天时间阅 ...

  9. DS博客作业03—栈和队列

    1.本周学习总结 本周学习了栈和队列两种数据结构,分别对应后进先出,先进先出两种数据操作 学会栈的特殊类型-共享栈,队列的特殊类型-循环队列的一系列操作 学会熟练使用栈和队列的STL容器,使代码简洁 ...

  10. Linux基础命令-cd

    cd 作用:切换路径 切换至家目录 $ cd $ cd~ 在上一个目录和当前目录来回切换 $ cd - 切换至某用户的家目录 # cd ~ # pwd /root # cd ~quail #pwd / ...