本实验使用mnist数据集完成手写数字识别的测试。识别正确率认为是95%

完整代码如下:

 #!/usr/bin/env python
# coding: utf-8 # In[1]: import numpy
import scipy.special
import matplotlib.pyplot # In[2]: class neuralNetwork:
def __init__(self, inputNodes, hiddenNodes, outputNodes,learningRate):
self.iNodes = inputNodes
self.oNodes = outputNodes
self.hNodes = hiddenNodes
self.lr = learningRate
self.wih = numpy.random.normal (0.0, pow(self.hNodes,-0.5), (self.hNodes, self.iNodes))
self.who = numpy.random.normal (0.0, pow(self.oNodes,-0.5), (self.oNodes, self.hNodes)) self.activation_function = lambda x: scipy.special.expit(x)
#print(self.wih)
pass def train(self,inputs_list, target_list):
inputs = numpy.array(inputs_list, ndmin=2).T
targets = numpy.array(target_list, ndmin=2).T
#print(inputs)
#print(targets)
hidden_inputs = numpy.dot(self.wih,inputs)
#print(self.wih.shape)
#print(inputs.shape)
hidden_outputs = self.activation_function(hidden_inputs)
#print(hidden_inputs)
final_inputs = numpy.dot(self.who,hidden_outputs)
#print(hidden_outputs)
final_outputs = self.activation_function(final_inputs) output_errors = targets - final_outputs
hidden_errors = numpy.dot(self.who.T,output_errors)
self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)),numpy.transpose(hidden_outputs))
self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)),numpy.transpose(inputs))
pass def query(self, inputs_list):
inputs = numpy.array(inputs_list, ndmin=2).T
hidden_inputs = numpy.dot(self.wih,inputs)
hidden_outputs = self.activation_function(hidden_inputs)
final_inputs = numpy.dot(self.who,hidden_outputs)
final_outpus = self.activation_function(final_inputs)
return final_outpus
pass # In[3]: inputNodes = 784
outputNodes = 10
hiddenNodes = 100
learningRate = 0.1
nN = neuralNetwork(inputNodes, hiddenNodes, outputNodes, learningRate) # In[4]: data_file = open("mnist_train.csv",'r')
data_list = data_file.readlines()
data_file.close() # In[5]: epochs = 1
for e in range(epochs) :
for record in data_list:
all_values = record.split(',')
inputs = numpy.asfarray( all_values [1:])/255.0*0.99+0.01
targets = numpy.zeros(outputNodes) + 0.01
targets[int (all_values[0])] = 0.99
nN.train(inputs,targets)
pass
pass # In[6]: test_data_file = open("mnist_test.csv",'r')
test_data_list = test_data_file.readlines()
test_data_file.close() # In[7]: scorecard = []
for record in test_data_list:
all_values = record.split(',')
correct_label = int(all_values[0])
inputs = numpy.asfarray( all_values [1:])/255.0*0.99+0.01
outputs = nN.query(inputs)
label = numpy.argmax(outputs)
if(label == correct_label):
scorecard.append(1)
else:
scorecard.append(0)
pass
pass # In[8]: scorecard_array = numpy.asarray(scorecard)
print ("performance = " ,scorecard_array.sum()/scorecard_array.size) # In[9]: import scipy.misc
img_array = scipy.misc.imread('test.png',flatten="True")
img_data = 255.0 - img_array . reshape(784)
img_data = (img_data /255.0 * 0.99 ) + 0.01
op=nN.query(img_data)
print(op)
print(numpy.argmax(op)) # In[10]: all_values = data_list[1].split(',')
image_array = numpy.asfarray( all_values [1:]).reshape((28,28))
matplotlib.pyplot.imshow(image_array, cmap = 'Greys',interpolation='None')

IN[9]到IN[10]的代码分别用于测试自己制作的数字识别效果和显示图像。可去掉。

代码运行过程需要mnist数据集,链接:https://pan.baidu.com/s/120GTdZ8Tivkp1KD9VQ_XeQ

BP神经网络的结构:https://www.cnblogs.com/bai2018/p/10353768.html

在输入层的神经元数据选取上,和像素数量一致。MNIST采用28X28的像素点,则输入层的神经元数量为28*28=784个

输入层和隐层,输出层和隐层之间的权值选取为随机数。使用正态分布的随机数较好。

隐层的神经元数量合适即可,取值为经验法,假设为100个

输出层神经元表示数据0-9,则使用10个神经元,分别表示数字0-9的可能性概率。

训练过程中使用的学习效率,取0.2吧。。。

将权重,各层神经元值,误差等,表示为矩阵数据进行处理。

正向传递数据查询结果,误差的反向传递改变权重等过程,涉及到的数学推导:https://www.cnblogs.com/bai2018/p/10353814.html

BP神经网络在python下的自主搭建梳理的更多相关文章

  1. BP神经网络与Python实现

    人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善. 联想大家熟悉的回归问题, 神经网络模型实际上是根据训练样本创造出一个多维输入多维输出的函数, 并使用该函数进行预测, 网 ...

  2. 三层BP神经网络的python实现

    这是一个非常漂亮的三层反向传播神经网络的python实现,下一步我准备试着将其修改为多层BP神经网络. 下面是运行演示函数的截图,你会发现预测的结果很惊人! 提示:运行演示函数的时候,可以尝试改变隐藏 ...

  3. 模式识别之ocr项目---(模板匹配&BP神经网络训练)

    摘 要 在MATLAB环境下利用USB摄像头采集字符图像,读取一帧保存为图像,然后对读取保存的字符图像,灰度化,二值化,在此基础上做倾斜矫正,对矫正的图像进行滤波平滑处理,然后对字符区域进行提取分割出 ...

  4. 字符识别OCR研究一(模板匹配&BP神经网络训练)

    摘 要 在MATLAB环境下利用USB摄像头採集字符图像.读取一帧保存为图像.然后对读取保存的字符图像,灰度化.二值化,在此基础上做倾斜矫正.对矫正的图像进行滤波平滑处理,然后对字符区域进行提取切割出 ...

  5. 用Python实现BP神经网络(附代码)

    用Python实现出来的机器学习算法都是什么样子呢? 前两期线性回归及逻辑回归项目已发布(见文末链接),今天来讲讲BP神经网络. BP神经网络 全部代码 https://github.com/lawl ...

  6. python手写bp神经网络实现人脸性别识别1.0

    写在前面:本实验用到的图片均来自google图片,侵删! 实验介绍 用python手写一个简单bp神经网络,实现人脸的性别识别.由于本人的机器配置比较差,所以无法使用网上很红的人脸大数据数据集(如lf ...

  7. Python语言编写BP神经网络

    Python语言编写BP神经网络 2016年10月31日 16:42:44 ldy944758217 阅读数 3135   人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善 ...

  8. BP神经网络原理及python实现

    [废话外传]:终于要讲神经网络了,这个让我踏进机器学习大门,让我读研,改变我人生命运的四个字!话说那么一天,我在乱点百度,看到了这样的内容: 看到这么高大上,这么牛逼的定义,怎么能不让我这个技术宅男心 ...

  9. Python实现bp神经网络识别MNIST数据集

    title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] cat ...

随机推荐

  1. pta l3-20(至多删三个字符)

    题目链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805046946938880 题意:给定一个长度<=106 ...

  2. 有关vim的一些命令

    所有的 Unix Like 系统都会内建 vi 文书编辑器,其他的文书编辑器则不一定会存在. 但是目前我们使用比较多的是 vim 编辑器. vim 具有程序编辑的能力,可以主动的以字体颜色辨别语法的正 ...

  3. JavaScript Validate a Valid Date formatted as "mm/dd/yyyy"

    // Validates that the input string is a valid date formatted as "mm/dd/yyyy" function isVa ...

  4. Python+Selenium学习--前进和后退

    场景 这两个功能一般不太常用.所能想到的场景大概也就是在几个页面间来回跳转,省去每次都get url. 代码 #!/usr/bin/env python # -*- coding:utf-8 -*- ...

  5. python:django

    ====启动django==== python manager.py runserver --host 0.0.0.0 --port 9008 python manager.py runserver ...

  6. c++笔试题贪吃蛇问题

    贪吃蛇 现在有一个N*M(N,M=100)的方形矩形,在这个矩形的每一个方格上都放有一个随机值,一条可爱的小蛇从矩形的 左上角开始出发,每次移动都只能移动一格,向右或向下,而每到达一格贪吃的小蛇都会吧 ...

  7. f5 SNMP配置

    1.选择监控终端 2.配置团体名称:

  8. f5售后查询

    登录: https://secure.f5.com/validate/validate.jsp http://boochem.blog.51cto.com/628505/633907

  9. 【centos】centos中添加一个新用户,并授权

    前言 有时候给root用户不太方便,新建一个用于并赋予权限这个做法相对好些 创建新用户 创建一个用户名为:cmj [root@localhost ~]# adduser cmj 为这个用户初始化密码, ...

  10. swift - 加速器/摇一摇功能

    import UIKit class ViewController: UIViewController { override func viewDidLoad() { super.viewDidLoa ...