【HDU5909】Tree Cutting(FWT)

题面

vjudge

题目大意:

给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值

定义一棵子树的权值为所有节点的异或和,问权值为\(0..m-1\)的所有子树的个数

题解

考虑\(dp\)

设\(f[i][j]\)表示以\(i\)为根节点的子树中,异或和为\(j\)的子树的个数

很显然,每次合并就是两个\(dp\)值做\(xor\)卷积

那么直接用\(FWT\)优化就行了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 1111
#define MOD (1000000007)
#define inv2 (500000004)
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int n,m,N;
void FWT(int *P,int opt)
{
for(int i=2;i<=N;i<<=1)
for(int p=i>>1,j=0;j<N;j+=i)
for(int k=j;k<j+p;++k)
{
int x=P[k],y=P[k+p];
P[k]=(x+y)%MOD;P[k+p]=(x-y+MOD)%MOD;
if(opt==-1)P[k]=1ll*P[k]*inv2%MOD,P[k+p]=1ll*P[k+p]*inv2%MOD;
}
}
int f[MAX][1<<10],ans[MAX];
void dfs(int u,int ff)
{
FWT(f[u],1);
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
dfs(v,u);
for(int j=0;j<N;++j)f[u][j]=1ll*f[u][j]*f[v][j]%MOD;
}
FWT(f[u],-1);f[u][0]=(f[u][0]+1)%MOD;FWT(f[u],1);
}
int main()
{
int T=read();
while(T--)
{
n=read();m=read();cnt=1;N=m;
memset(f,0,sizeof(f));memset(h,0,sizeof(h));memset(ans,0,sizeof(ans));
for(int i=1;i<=n;++i)f[i][read()]++;
for(int i=1;i<n;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
dfs(1,0);
for(int i=1;i<=n;++i)FWT(f[i],-1);
for(int i=1;i<=n;++i)f[i][0]=(f[i][0]-1+MOD)%MOD;
for(int i=1;i<=n;++i)
for(int j=0;j<m;++j)
ans[j]=(ans[j]+f[i][j])%MOD;
for(int i=0;i<m;++i,(i==m)?putchar('\n'):putchar(' '))printf("%d",ans[i]);
}
}

【HDU5909】Tree Cutting(FWT)的更多相关文章

  1. 【CF850E】Random Elections(FWT)

    [CF850E]Random Elections(FWT) 题面 洛谷 CF 题解 看懂题就是一眼题了... 显然三个人是等价的,所以只需要考虑一个人赢了另外两个人就好了. 那么在赢另外两个人的过程中 ...

  2. 【CF662C】Binary Table(FWT)

    [CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可 ...

  3. 【BZOJ4589】Hard Nim(FWT)

    题解: 由博弈论可以知道题目等价于求这$n$个数$\^$为0 快速幂$+fwt$ 这样是$nlog^2$的 并不能过 而且得注意$m$的数组$\^$一下会生成$2m$ #include <bit ...

  4. Luogu4717 【模板】快速沃尔什变换(FWT)

    https://www.cnblogs.com/RabbitHu/p/9182047.html 完全没有学证明的欲望因为这个实在太好写了而且FFT就算学过也忘得差不多了只会写板子 #include&l ...

  5. 洛谷P4717 【模板】快速沃尔什变换(FWT)

    传送门 这玩意儿太骚了…… 参考了yyb巨佬的 //minamoto #include<iostream> #include<cstdio> #define ll long l ...

  6. 【CF1247F】Tree Factory(构造)

    题意:给定一棵n个点的树,要求将一条可以随意标号的链通过若干次操作变成这棵树 一次操作是指若v不为根且v的父亲不为根,则将v以及v的子树移到v的父亲的父亲上 要求给出标号方案,操作次数以及方案 n&l ...

  7. 【AtCoder3611】Tree MST(点分治,最小生成树)

    [AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...

  8. 【WC2018】州区划分(FWT,动态规划)

    [WC2018]州区划分(FWT,动态规划) 题面 UOJ 洛谷 题解 首先有一个暴力做法(就有\(50\)分了) 先\(O(2^nn^2)\)预处理出每个子集是否合法,然后设\(f[S]\)表示当前 ...

  9. 【锁】Oracle死锁(DeadLock)的分类及其模拟

    [锁]Oracle死锁(DeadLock)的分类及其模拟 1  BLOG文档结构图 2  前言部分 2.1  导读和注意事项 各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学到一些其它你所不 ...

随机推荐

  1. Solr记录-solr内核与索引

    Solr核心(内核) Solr核心(Core)是Lucene索引的运行实例,包含使用它所需的所有Solr配置文件.我们需要创建一个Solr Core来执行索引和分析等操作. Solr应用程序可以包含一 ...

  2. Linux通过ssh登录其他服务器,不用输入密码

    有A(192.168.10.163)和B(192.168.10.164)两台服务器,为了使A服务器通过SSH连接B服务器时,免密登录,做以下操作. 1. 登录A(192.168.10.163)服务器( ...

  3. POJ - 2299 Ultra-QuickSort(归并排序)

    https://vjudge.net/problem/POJ-2299 题意 求对于给定的无序数组,求出经过最少多少次相邻元素的交换之后,可以使数组从小到大有序. 分析 很明显是求逆序对的数目,那就要 ...

  4. bzoj千题计划104:bzoj1013: [JSOI2008]球形空间产生器sphere

    http://www.lydsy.com/JudgeOnline/problem.php?id=1013 设球心(x1,x2,x3……) 已知点的坐标为t[i][j] 那么 对于每个i满足 Σ (t[ ...

  5. 用matplotlib制作的比较满意的蜡烛图

    用matplotlib制作的比较满意的蜡烛图 2D图形制作包, 功能强大, 习练了很久, 终于搞定了一个比较满意的脚本. 特点: 使用方面要非常简单 绘制出来的图要非常的满意, 具有如下的特点 时间和 ...

  6. CSS的力量:用一个DIV画图

    这些图片都是用一个DIV绘制出来的,其实原理并不复杂. 这些图片都是由CSS绘制出来的,通过background-image叠加实现, 如蘑菇头的实现,通过 radial-gradient 径向渐变  ...

  7. JQuery 对表格的详细操作

    <%@ page language="java" contentType="text/html; charset=UTF-8"pageEncoding=& ...

  8. UVALive 7456 Least Crucial Node

    题目链接 题意: 给定一个无向图,一个汇集点,问哪一个点是最关键的,如果有多个关键点,输出序号最小的那个. 因为数据量比较小,所以暴力搜索就行,每去掉一个点,寻找和汇集点相连的还剩几个点,以此确定哪个 ...

  9. 跳过复制错误——slave_skip_errors、slave_exec_mode

    这一篇写写复制错误处理相关的另两个参数slave_skip_errors.slave_exec_mode,基本环境参考<复制错误处理——sql_slave_skip_counter> 一. ...

  10. input文本框禁止修改文本——disabled和readonly属性的作用及区别

    1.input文本框禁止修改文本 disabled属性:<input type="text" name="name" value="xxx&qu ...