题目链接

\(Description\)

求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示)。

\(Solution\)

对每位分别DP。注意考虑前导0: 在最后统计时,把0的答案减掉对应位的即可,在第\(i\)位的前导0会产生额外的\(10^{i-1}\)个答案。

#include <cstdio>
#include <cstring>
#include <algorithm> int Ans[10],A[10],f[10][10],pw[10];
bool vis[10][10]; int DFS(int pos,int cnt,bool lim,int K)
{
if(!pos) return cnt;
if(!lim && vis[pos][cnt]) return f[pos][cnt];
int up=lim?A[pos]:9, res=0;
for(int i=0; i<=up; ++i)
res+=DFS(pos-1,cnt+(i==K),i==up&&lim,K);
if(!lim) vis[pos][cnt]=1,f[pos][cnt]=res;
return res;
} int main()
{
pw[0]=1;
for(int i=1; i<=8; ++i) pw[i]=pw[i-1]*10;
int l,r;
while(scanf("%d%d",&l,&r),l&&r)
{
if(l>r) std::swap(l,r);
for(A[0]=0; r; r/=10) A[++A[0]]=r%10;
for(int i=0; i<=9; ++i)//每个数答案都是不同的。。别忘清空。
memset(vis,0,sizeof vis), Ans[i]=DFS(A[0],0,1,i);
int bit=A[0]; for(A[0]=0,--l; l; l/=10) A[++A[0]]=l%10;
for(int i=0; i<=9; ++i)
memset(vis,0,sizeof vis), Ans[i]-=DFS(A[0],0,1,i);
while(bit!=A[0]) Ans[0]-=pw[--bit];
for(int i=0; i<9; ++i) printf("%d ",Ans[i]);
printf("%d\n",Ans[9]);
}
return 0;
}

数字计数:

//824kb	52ms
//被longlong坑。。
#include <cstdio>
#include <cstring>
#include <algorithm>
typedef long long LL; LL Ans[13],A[13],f[13][13],pw[13];
bool vis[13][13]; LL DFS(int pos,LL cnt,bool lim,int K)
{
if(!pos) return cnt;
if(!lim && vis[pos][cnt]) return f[pos][cnt];
int up=lim?A[pos]:9; LL res=0;
for(int i=0; i<=up; ++i)
res+=DFS(pos-1,cnt+(i==K),i==up&&lim,K);
if(!lim) vis[pos][cnt]=1,f[pos][cnt]=res;
return res;
} int main()
{
pw[0]=1;
for(int i=1; i<=12; ++i) pw[i]=pw[i-1]*10ll;
LL l,r;
scanf("%lld%lld",&l,&r);
if(l>r) std::swap(l,r);
for(A[0]=0; r; r/=10) A[++A[0]]=r%10;
for(int i=0; i<=9; ++i)//每个数答案都是不同的。。别忘清空。
memset(vis,0,sizeof vis), Ans[i]=DFS(A[0],0,1,i);
int bit=A[0]; for(A[0]=0,--l; l; l/=10) A[++A[0]]=l%10;
for(int i=0; i<=9; ++i)
memset(vis,0,sizeof vis), Ans[i]-=DFS(A[0],0,1,i);
while(bit!=A[0]) Ans[0]-=pw[--bit];
for(int i=0; i<9; ++i) printf("%lld ",Ans[i]);
printf("%lld",Ans[9]); return 0;
}

UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)的更多相关文章

  1. [ZJOI2010]数字计数 数位DP

    最近在写DP,今天把最近写的都放上来好了,,, 题意:给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 首先询问的是一个区间,显然是要分别求出1 ~ r ,1 ...

  2. [luogu2602 ZJOI2010] 数字计数 (数位dp)

    传送门 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. Output ...

  3. Luogu P2602 [ZJOI2010]数字计数 数位DP

    很久以前就...但是一直咕咕咕 思路:数位$DP$ 提交:1次 题解:见代码 #include<cstdio> #include<iostream> #include<c ...

  4. 洛谷P2602 [ZJOI2010]数字计数(数位dp)

    数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...

  5. UVA 1640 The Counting Problem UVA1640 求[a,b]或者[b,a]区间内0~9在里面各个数的数位上出现的总次数。

    /** 题目:UVA 1640 The Counting Problem UVA1640 链接:https://vjudge.net/problem/UVA-1640 题意:求[a,b]或者[b,a] ...

  6. UVA 1640 The Counting Problem

    https://vjudge.net/problem/UVA-1640 题意:统计区间[l,r]中0——9的出现次数 数位DP 注意删除前导0 #include<cmath> #inclu ...

  7. 1833: [ZJOI2010]count 数字计数——数位dp

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...

  8. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  9. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

随机推荐

  1. 函数和常用模块【day06】:logging模块(八)

    本节内容 1.简述 2.简单用法 3.复杂日志输出 4.handler详解 5.控制台和文件日志共同输出 一.简述 很多程序都有记录日志的需求,并且日志中包含的信息即有正常的程序访问日志,还可能有错误 ...

  2. Mac安装WineHQ

    下载: (链接: https://pan.baidu.com/s/1o7NPhNk 密码: 5227) 安装: 先决条件: XQuartz>=2.7.7 系统设置允许未签名的包. 在https: ...

  3. AngularJs入门篇-控制器的加深理解基础篇

    下面做的是一个更新时间的效果,每一秒钟就会更新一下,视图中会显示出当前的时间   下面的这个例子中,SceondController函数将接受两个参数,既该DOM元素的$scope和$timeout. ...

  4. [译]使用chage来管理Linux密码过期时间的七个例子

    本文译自 7 Examples to Manage Linux Password Expiration and Aging Using chage 本文主要介绍命令chage的使用,译文会对原文内容会 ...

  5. 原生JS获取元素的位置与尺寸

    1.内高度.内宽度: 内边距 + 内容框 element.clientWidth element.clientHeight 2.外高度,外宽度: 边框 + 内边距 + 内容框 element.offs ...

  6. Linux的软中断处理实现 【转】

    转自:http://blog.chinaunix.net/uid-25909619-id-3070190.html 一.概念   首先我们要知道为什么中断需要下半部 .我们可以想象一下,如果没有下半部 ...

  7. STS热部署,springboot项目中修改代码不用重新启动服务

    方法如下: 1.在pom文件中引入  devtools  依赖: <dependency> <groupId>org.springframework.boot</grou ...

  8. jquery-easyui:格式化列

    主框架页面: 在主界面区会加载西区菜单点击的URL内容. <!DOCTYPE html> <html> <head> <meta charset=" ...

  9. 纯js遍历json获取值动态为select添加option

    遍历json数组 并动态为select添加option 直接上代码,重要部分有注解 <!DOCTYPE html> <html lang="en"> < ...

  10. 前后端分离之mockjs实战demo

    基于vue-cli+webpack的demo 项目结构 axios文件夹用来创建axios相关配置: import axios from 'axios' import vue from 'vue' a ...