题目链接

\(Description\)

求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示)。

\(Solution\)

对每位分别DP。注意考虑前导0: 在最后统计时,把0的答案减掉对应位的即可,在第\(i\)位的前导0会产生额外的\(10^{i-1}\)个答案。

#include <cstdio>
#include <cstring>
#include <algorithm> int Ans[10],A[10],f[10][10],pw[10];
bool vis[10][10]; int DFS(int pos,int cnt,bool lim,int K)
{
if(!pos) return cnt;
if(!lim && vis[pos][cnt]) return f[pos][cnt];
int up=lim?A[pos]:9, res=0;
for(int i=0; i<=up; ++i)
res+=DFS(pos-1,cnt+(i==K),i==up&&lim,K);
if(!lim) vis[pos][cnt]=1,f[pos][cnt]=res;
return res;
} int main()
{
pw[0]=1;
for(int i=1; i<=8; ++i) pw[i]=pw[i-1]*10;
int l,r;
while(scanf("%d%d",&l,&r),l&&r)
{
if(l>r) std::swap(l,r);
for(A[0]=0; r; r/=10) A[++A[0]]=r%10;
for(int i=0; i<=9; ++i)//每个数答案都是不同的。。别忘清空。
memset(vis,0,sizeof vis), Ans[i]=DFS(A[0],0,1,i);
int bit=A[0]; for(A[0]=0,--l; l; l/=10) A[++A[0]]=l%10;
for(int i=0; i<=9; ++i)
memset(vis,0,sizeof vis), Ans[i]-=DFS(A[0],0,1,i);
while(bit!=A[0]) Ans[0]-=pw[--bit];
for(int i=0; i<9; ++i) printf("%d ",Ans[i]);
printf("%d\n",Ans[9]);
}
return 0;
}

数字计数:

//824kb	52ms
//被longlong坑。。
#include <cstdio>
#include <cstring>
#include <algorithm>
typedef long long LL; LL Ans[13],A[13],f[13][13],pw[13];
bool vis[13][13]; LL DFS(int pos,LL cnt,bool lim,int K)
{
if(!pos) return cnt;
if(!lim && vis[pos][cnt]) return f[pos][cnt];
int up=lim?A[pos]:9; LL res=0;
for(int i=0; i<=up; ++i)
res+=DFS(pos-1,cnt+(i==K),i==up&&lim,K);
if(!lim) vis[pos][cnt]=1,f[pos][cnt]=res;
return res;
} int main()
{
pw[0]=1;
for(int i=1; i<=12; ++i) pw[i]=pw[i-1]*10ll;
LL l,r;
scanf("%lld%lld",&l,&r);
if(l>r) std::swap(l,r);
for(A[0]=0; r; r/=10) A[++A[0]]=r%10;
for(int i=0; i<=9; ++i)//每个数答案都是不同的。。别忘清空。
memset(vis,0,sizeof vis), Ans[i]=DFS(A[0],0,1,i);
int bit=A[0]; for(A[0]=0,--l; l; l/=10) A[++A[0]]=l%10;
for(int i=0; i<=9; ++i)
memset(vis,0,sizeof vis), Ans[i]-=DFS(A[0],0,1,i);
while(bit!=A[0]) Ans[0]-=pw[--bit];
for(int i=0; i<9; ++i) printf("%lld ",Ans[i]);
printf("%lld",Ans[9]); return 0;
}

UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)的更多相关文章

  1. [ZJOI2010]数字计数 数位DP

    最近在写DP,今天把最近写的都放上来好了,,, 题意:给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 首先询问的是一个区间,显然是要分别求出1 ~ r ,1 ...

  2. [luogu2602 ZJOI2010] 数字计数 (数位dp)

    传送门 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. Output ...

  3. Luogu P2602 [ZJOI2010]数字计数 数位DP

    很久以前就...但是一直咕咕咕 思路:数位$DP$ 提交:1次 题解:见代码 #include<cstdio> #include<iostream> #include<c ...

  4. 洛谷P2602 [ZJOI2010]数字计数(数位dp)

    数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...

  5. UVA 1640 The Counting Problem UVA1640 求[a,b]或者[b,a]区间内0~9在里面各个数的数位上出现的总次数。

    /** 题目:UVA 1640 The Counting Problem UVA1640 链接:https://vjudge.net/problem/UVA-1640 题意:求[a,b]或者[b,a] ...

  6. UVA 1640 The Counting Problem

    https://vjudge.net/problem/UVA-1640 题意:统计区间[l,r]中0——9的出现次数 数位DP 注意删除前导0 #include<cmath> #inclu ...

  7. 1833: [ZJOI2010]count 数字计数——数位dp

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...

  8. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  9. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

随机推荐

  1. Spark记录-spark编程介绍

    Spark核心编程 Spark 核心是整个项目的基础.它提供了分布式任务调度,调度和基本的 I/O 功能.Spark 使用一种称为RDD(弹性分布式数据集)一个专门的基础数据结构,是整个机器分区数据的 ...

  2. ActiveMQ基础教程----简单介绍与基础使用

    概述 ActiveMQ是由Apache出品的,一款最流行的,能力强劲的开源消息总线.ActiveMQ是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,它非常快速,支持多 ...

  3. IEnumerator和IEnumerable详解

    IEnumerator和IEnumerable 从名字常来看,IEnumerator是枚举器的意思,IEnumerable是可枚举的意思. 了解了两个接口代表的含义后,接着看源码: IEnumerat ...

  4. pandas 实现通达信里的MFI

    pandas 实现通达信里的MFI 算法里的关键点: combine()和rolling().sum()方法 combine -- 综合运算, rolling().sum() -- 滚动求和 利用pd ...

  5. 浅谈 JSON 那些被转义的字符们

    其实,之前我一直以为 JSON 会把 ASCII 可显示字符以外的统统转义为 Unicode,直到有一次我用 JSON.stringify 才发现,其实是 PHP 为我们想的太周到了. 我以前是一位 ...

  6. html5 canvas贝塞尔曲线篇(上)

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. [整理]定义但未初始化赋值的局部变量与OXCCCCCCCC

    开发环境 : win7 32bit ,VS2010,先看一段C代码: #include <stdio.h> int main(){ int x; //-858993460 printf(& ...

  8. 从零开始编写自己的JavaScript框架(一)

    1. 模块的定义和加载 1.1 模块的定义 一个框架想要能支撑较大的应用,首先要考虑怎么做模块化.有了内核和模块加载系统,外围的模块就可以一个一个增加.不同的JavaScript框架,实现模块化方式各 ...

  9. 转:我是否该放弃VB.Net?

    我是否该放弃VB.Net呢?这个问题一次次的出现在我的脑海里,而且这种想法越来越强烈.放弃VB.Net至少能让我的生活变得轻松些.如果你是个C#程序员,那拷贝粘贴代码会很容易,因为可以找到的例子代码如 ...

  10. 第6月第17天 CGAffineTransformMake(a,b,c,d,tx,ty) 矩阵运算的原理

    1. 为了把二维图形的变化统一在一个坐标系里,引入了齐次坐标的概念,即把一个图形用一个三维矩阵表示,其中第三列总是(0,0,1),用来作为坐标系的标准.所以所有的变化都由前两列完成. 以上参数在矩阵中 ...