Numpy 常用矩阵计算函数
基本属性
在做一些数据分析的时候,我们通常会把数据存为矩阵的形式,然后python本身对于矩阵的操作是不够的,因此出现了numpy这样一个科学开发库来进行python在次上面的不足。
Numpy's array 类被称为ndarray。 这个对象常用而重要的属性如下:
- ndarray.ndim: 输出矩阵(数组)的维度
- ndarray.shape: 输出矩阵的各维数大小,相当于matlab中的size()函数
- ndarray.size: 输出矩阵(数组)元素的总个数,相当于各维数之积
- ndarray.dtype: 输出矩阵元素的类型,如int16, int32, float64等
- ndarray.itemsize: 输出矩阵中每个元素所占字节数
一个例子
>>> from numpy import *
>>> a = arange(15).reshape(3, 5)
>>> a
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int32'
>>> a.itemsize
4
>>> a.size
15
>>> type(a)
numpy.ndarray
>>> b = array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
numpy.ndarray
矩阵创建
python中有多种方式来创建矩阵,第一种是通过Python中的列表直接创建,第二种是通过numpy中的array函数,第三种是利用一些特殊的函数如zeros
, ones
, empty
等来创建一些特殊的矩阵。
>>> from numpy import *
>>> a = array( [2,3,4] )
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int32')
>>> b = array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')
-----------------------------------------------
>>> a = array(1,2,3,4) # WRONG
>>> a = array([1,2,3,4]) # RIGHT
-----------------------------------------------
>>> b = array( [ (1.5,2,3), (4,5,6) ] )
>>> b
array([[ 1.5, 2. , 3. ],
[ 4. , 5. , 6. ]])
----------------------------------------------
>>> c = array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j, 2.+0.j],
[ 3.+0.j, 4.+0.j]])
-----------------------------------------------
>>> zeros( (3,4) )
array([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])
>>> ones( (2,3,4), dtype=int16 ) # dtype can also be specified
array([[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]],
[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]]], dtype=int16)
>>> empty( (2,3) )
array([[ 3.73603959e-262, 6.02658058e-154, 6.55490914e-260],
[ 5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])
如果想产生一些连续有规则的序列,可以使用numpy中的arange函数,类似于python中的range,功能相当于matlab中的冒号表达式,此外linespace函数产生等分间隔的数。arange函数的形式是arange(start, end, step)
, 表示从start开始,每隔step取一个数,到end(但不包括end)结束;linespace函数的形式是linespace(start, end, divide)
,表示将区间[start,end)等分为divide这么多分,并取这些等分的点。
>>> arange( 10, 30, 5 )
array([10, 15, 20, 25])
>>> arange( 0, 2, 0.3 ) # it accepts float arguments
array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
---------------------------------------------------------------
>>> linspace( 0, 2, 9 ) # 9 numbers from 0 to 2
array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ])
>>> x = linspace( 0, 2*pi, 100 ) # useful to evaluate function at lots of points
>>> f = sin(x)
numpy中常见的其他产生矩阵的函数件这里。
常用操作
常见的+,-,*,/,**
不再赘述,这里强调一下矩阵的点乘和矩阵的惩罚。
>>> A = array( [[1,1],
... [0,1]] )
>>> B = array( [[2,0],
... [3,4]] )
>>> A*B # elementwise product
array([[2, 0],
[0, 4]])
>>> dot(A,B) # matrix product
array([[5, 4],
[3, 4]])
一些操作符如+=
和*=
只是跟新原数组而不是创造一个新数组,因此如果你在原数组上+=
一个新的不同类型的矩阵,得到的矩阵的类型和原矩阵相同。
当不同类型矩阵相操作时,得到的结果倾向于更准确的结果,如整型和浮点型相加,得到结果为浮点型。
Many unary operations, such as computing the sum of all the elements in the array, are implemented as methods of the ndarray class.
numpy中提供了一些常用的操作,比如矩阵的求和,求矩阵的最大最小值等,如果矩阵有多维,可以通过指定维数来得到某一位的基本操作(先列后行)。
>>> b = arange(12).reshape(3,4)
>>> b
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>>
>>> b.sum(axis=0) # sum of each column
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1) # min of each row
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1) # cumulative sum along each row
array([[ 0, 1, 3, 6],
[ 4, 9, 15, 22],
[ 8, 17, 27, 38]])
常用函数
numpy提供了许多常用的函数,如求平方根,指数等等。
>>> B = arange(3)
>>> B
array([0, 1, 2])
>>> exp(B)
array([ 1. , 2.71828183, 7.3890561 ])
>>> sqrt(B)
array([ 0. , 1. , 1.41421356])
>>> C = array([2., -1., 4.])
>>> add(B, C)
array([ 2., 0., 6.])
更多的函数介绍请点击这里
索引(Indexing), 分片(Slicing), 和迭代(Iterating)
One-dimensional
>>> a = arange(10)**3
>>> a
array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000 # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000
>>> a
array([-1000, 1, -1000, 27, -1000, 125, 216, 343, 512, 729])
>>> a[ : :-1] # reversed a
array([ 729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000])
>>> for i in a:
... print i**(1/3.),
...
nan 1.0 nan 3.0 nan 5.0 6.0 7.0 8.0 9.0
Multidimensional
>>> def f(x,y):
... return 10*x+y
...
>>> b = fromfunction(f,(5,4),dtype=int)
>>> b
array([[ 0, 1, 2, 3],
[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]])
>>> b[2,3]
23
>>> b[0:5, 1] # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[ : ,1] # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, : ] # each column in the second and third row of b
array([[10, 11, 12, 13],
[20, 21, 22, 23]])
Iterating
>>> for row in b:
... print row
...
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]
---------------------------------------------------------
>>> for element in b.flat:
... print element,
...
0 1 2 3 10 11 12 13 20 21 22 23 30 31 32 33 40 41 42 43
Shape Manipulation
改变数组的形状
矩阵各个维数有不同的大小,我们可以通过一些命令如ravel()
,resize()
,resize()
等来改变矩阵的大小,下面是一些例子:
>>> a = floor(10*random.random((3,4)))
>>> a
array([[ 7., 5., 9., 3.],
[ 7., 2., 7., 8.],
[ 6., 8., 3., 2.]])
>>> a.shape
(3, 4)
>>> a.ravel() # flatten the array
array([ 7., 5., 9., 3., 7., 2., 7., 8., 6., 8., 3., 2.])
>>> a.shape = (6, 2)
>>> a.transpose()
array([[ 7., 9., 7., 7., 6., 3.],
[ 5., 3., 2., 8., 8., 2.]])
>>> a
array([[ 7., 5.],
[ 9., 3.],
[ 7., 2.],
[ 7., 8.],
[ 6., 8.],
[ 3., 2.]])
>>> a.resize((2,6))
>>> a
array([[ 7., 5., 9., 3., 7., 2.],
[ 7., 8., 6., 8., 3., 2.]])
>>> a.reshape(3,-1) # 当reshape中的参数为-1时,则对应维度的大小会自动计算
array([[ 7., 5., 9., 3.],
[ 7., 2., 7., 8.],
[ 6., 8., 3., 2.]])
Stacking together different arrays
numpy中提供了一下几种方式来将不同的矩阵压缩在一起:
>>> a = floor(10*random.random((2,2)))
>>> a
array([[ 1., 1.],
[ 5., 8.]])
>>> b = floor(10*random.random((2,2)))
>>> b
array([[ 3., 3.],
[ 6., 0.]])
>>> vstack((a,b))
array([[ 1., 1.],
[ 5., 8.],
[ 3., 3.],
[ 6., 0.]])
>>> hstack((a,b))
array([[ 1., 1., 3., 3.],
[ 5., 8., 6., 0.]])
函数column_stack
和raw_stack
可以将一维数组以列(行)的形式插入到二维数组中,其等价于1位数组的vstack
:
>>> column_stack((a,b)) # With 2D arrays
array([[ 1., 1., 3., 3.],
[ 5., 8., 6., 0.]])
>>> a=array([4.,2.])
>>> b=array([2.,8.])
>>> a[:,newaxis] # This allows to have a 2D columns vector
array([[ 4.],
[ 2.]])
>>> column_stack((a[:,newaxis],b[:,newaxis]))
array([[ 4., 2.],
[ 2., 8.]])
>>> vstack((a[:,newaxis],b[:,newaxis])) # The behavior of vstack is different
array([[ 4.],
[ 2.],
[ 2.],
[ 8.]])
Note
在一些复杂的例子中,r_[]
和 c_[]
将数字压缩到数组中非常有用。他们允许使用range literals (":") :
>>> r_[1:4,0,4]
array([1, 2, 3, 0, 4])
Splitting one array into several smaller ones
Using hsplit, you can split an array along its horizontal axis, either by specifying the number of equally shaped arrays to return, or by specifying the columns after which the division should occur:
利用hsplit
和vsplit
,可以将矩阵按横坐标和纵坐标进行分割,可以通过指定将数据等分为多少份或者指定分割后所在的列(行)进行分割:
>>> a = floor(10*random.random((2,12)))
>>> a
array([[ 8., 8., 3., 9., 0., 4., 3., 0., 0., 6., 4., 4.],
[ 0., 3., 2., 9., 6., 0., 4., 5., 7., 5., 1., 4.]])
>>> hsplit(a,3) # Split a into 3
[array([[ 8., 8., 3., 9.],
[ 0., 3., 2., 9.]]), array([[ 0., 4., 3., 0.],
[ 6., 0., 4., 5.]]), array([[ 0., 6., 4., 4.],
[ 7., 5., 1., 4.]])]
>>> hsplit(a,(3,4)) # Split a after the third and the fourth column
[array([[ 8., 8., 3.],
[ 0., 3., 2.]]), array([[ 9.],
[ 9.]]), array([[ 0., 4., 3., 0., 0., 6., 4., 4.],
[ 6., 0., 4., 5., 7., 5., 1., 4.]])]
REFER:
https://github.com/wizardforcel/data-science-notebook/blob/master/numpy/NumPy%20%E4%BE%BF%E5%88%A9%E7%9A%84%E5%87%BD%E6%95%B0.md
http://scipy.github.io/old-wiki/pages/Tentative_NumPy_Tutorial#head-1529ae93dd5d431ffe3a1001a4ab1a394e70a5f2
Numpy 常用矩阵计算函数的更多相关文章
- numpy 常用工具函数 —— np.bincount/np.average
numpy 常用工具函数 —— np.bincount/np.average numpy 常用api(一) numpy 常用api(二) 一个函数提供 random_state 的关键字参数(keyw ...
- numpy常用函数之randn
numpy中有一些常用的用来产生随机数的函数,randn就是其中一个,randn函数位于numpy.random中,函数原型如下: numpy.random.randn(d0, d1, ..., dn ...
- numpy常用函数学习
目录numpy常用函数学习点乘法线型预测线性拟合裁剪.压缩和累乘相关性多项式拟合提取符号数组杂项点乘法该方法为数学方法,但是在numpy使用的时候略坑.numpy的点乘为a.dot(b)或numpy. ...
- Python数据分析--Numpy常用函数介绍(9)-- 与线性代数有关的模块linalg
numpy.linalg 模块包含线性代数的函数.使用这个模块,可以计算逆矩阵.求特征值.解线性方程组以及求解行列式等.一.计算逆矩阵 线性代数中,矩阵A与其逆矩阵A ^(-1)相乘后会得到一个单位矩 ...
- Numpy常用函数用法大全
.ndim :维度.shape :各维度的尺度 (2,5).size :元素的个数 10.dtype :元素的类型 dtype(‘int32’).itemsize :每个元素的大小,以字节为单位 ,每 ...
- Python数据分析--Numpy常用函数介绍(5)--Numpy中的相关性函数
摘要:NumPy中包含大量的函数,这些函数的设计初衷是能更方便地使用,掌握解这些函数,可以提升自己的工作效率.这些函数包括数组元素的选取和多项式运算等.下面通过实例进行详细了解. 前述通过对某公司股票 ...
- Python数据分析--Numpy常用函数介绍(6)--Numpy中与股票成交量有关的计算
成交量(volume)是投资中一个非常重要的变量,它是指在某一时段内具体的交易数,可以在分时图中绘制,包括日线图.周线图.月线图甚至是5分钟.30分钟.60分钟图中绘制. 股票市场成交量的变化反映了资 ...
- Python常用功能函数
Python常用功能函数汇总 1.按行写字符串到文件中 import sys, os, time, json def saveContext(filename,*name): format = '^' ...
- numpy中argsort函数用法
在Python中使用help帮助 >>> import numpy >>> help(numpy.argsort) Help on function argsort ...
随机推荐
- PHP上传文件参考配置大文件上传
PHP用超级全局变量数组$_FILES来记录文件上传相关信息的. 1.file_uploads=on/off 是否允许通过http方式上传文件 2.max_execution_time=30 允许脚本 ...
- ckeditor 实现ctrl+v粘贴图片并上传、word粘贴带图片
公司做的项目需要用到文本上传功能. Chrome+IE默认支持粘贴剪切板中的图片,但是我要粘贴的文章存在word里面,图片多达数十张,我总不能一张一张复制吧? 我希望打开文档doc直接复制粘贴到富文本 ...
- 中国剩余定理 (POJ 1006)
http://poj.org/problem?id=1006 在<孙子算经>中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),七七数之剩 ...
- 网络timeout区分
ConnectTimeout 连接建立时间,三次握手完成时间 SocketTimeout 数据传输过程中数据包之间间隔的最大时间 下面重点说下SocketTimeout,比如有如下图所示的http请求 ...
- DELPHI获取宽带IP
DELPHI获取宽带IP DELPHI获取宽带IP procedure TForm1.Button1Click(Sender: TObject);varurl: string;beginurl : ...
- Android-Version Compatibility Issues (Gradle 2.14.1 requires Android Gradle plugin 2.1.3 (or newer)) but project is using
当AndroidStudio加载工程Project的时候,出现以上错误❌,千万不要点击,否则就是更多其他的错误: 解决方案: 1.认真翻译错误: 2.分析问题发生的原因,然后看到了 ..... ...
- javascript实现OOP编程
1.首先通过一个函数来实现JS的单继承.使用原型方式来实现继承 (function () { $.extend({ oop: { extend: function (child, father) { ...
- [leetcode.com]算法题目 - Sort Colors
Given an array with n objects colored red, white or blue, sort them so that objects of the same colo ...
- cad.net的undo返回操作
这是提供给许多从lisp转移到c#的开发人员的一个函数,这个函数利用后绑代码实现undo返回操作. 本代码由edata提供: edata博客 /// <summary> /// 命令动作编 ...
- SpringCloud之Eureka集群
前面我们介绍了SpringCloud注册中心Eureka,但是存在一个单点故障的问题,一个注册中心远远不能满足实际的生产环境,现在我们介绍一下如何搭建一个Eureka集群. 一:集群环境搭建 我们先建 ...