Cat VS Dog

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)
Total Submission(s): 4039    Accepted Submission(s): 1458

Problem Description

The zoo have N cats and M dogs, today there are P children visiting the zoo, each child has a like-animal and a dislike-animal, if the child's like-animal is a cat, then his/hers dislike-animal must be a dog, and vice versa.
Now the zoo administrator is removing some animals, if one child's like-animal is not removed and his/hers dislike-animal is removed, he/she will be happy. So the administrator wants to know which animals he should remove to make maximum number of happy children.
 

Input

The input file contains multiple test cases, for each case, the first line contains three integers N <= 100, M <= 100 and P <= 500.
Next P lines, each line contains a child's like-animal and dislike-animal, C for cat and D for dog. (See sample for details)
 

Output

For each case, output a single integer: the maximum number of happy children.
 

Sample Input

1 1 2
C1 D1
D1 C1

1 2 4
C1 D1
C1 D1
C1 D2
D2 C1

 

Sample Output

1
3

Hint

Case 2: Remove D1 and D2, that makes child 1, 2, 3 happy.

 

Source

 
在有矛盾的男孩之间连边,有矛盾定义为两种情况:
  1.我喜欢的你不喜欢
  2.我不喜欢的你喜欢
建图后,求最大的两两互不相连的顶点集合即为答案,即求图的最大独立集。
一般图的最大独立集难求,转换为二分图,对男孩进行拆点,为i和p+i。若i和j有矛盾,则i与p+j、j与p+i连边。记得匹配数要除2。
 
定理:二分图最大独立集 == 顶点数 - 最小顶点覆盖 == 顶点数 - 二分图最大匹配
 //2017-08-25
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int N = ;
const int M = ;
int head[N], tot;
struct Edge{
int to, next;
}edge[M]; void init(){
tot = ;
memset(head, -, sizeof(head));
} void add_edge(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++; edge[tot].to = u;
edge[tot].next = head[v];
head[v] = tot++;
} int n, m, p;
string G[N];
int matching[N];
int check[N]; bool dfs(int u){
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!check[v]){//要求不在交替路
check[v] = ;//放入交替路
if(matching[v] == - || dfs(matching[v])){
//如果是未匹配点,说明交替路为增广路,则交换路径,并返回成功
matching[u] = v;
matching[v] = u;
return true;
}
}
}
return false;//不存在增广路
} //hungarian: 二分图最大匹配匈牙利算法
//input: null
//output: ans 最大匹配数
int hungarian(){
int ans = ;
memset(matching, -, sizeof(matching));
for(int u = ; u <= p; u++){
if(matching[u] == -){
memset(check, , sizeof(check));
if(dfs(u))
ans++;
}
}
return ans;
} string like[N], dislike[N]; int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputJ.txt", "r", stdin);
while(cin>>n>>m>>p && n){
init();
for(int i = ; i <= p; i++)
cin>>like[i]>>dislike[i];
for(int i = ; i <= p; i++){
for(int j = ; j < i; j++){
if(like[i] == dislike[j] || dislike[i] == like[j]){
add_edge(i, p+j);
add_edge(j, p+i);
}
}
}
cout<<p-hungarian()/<<endl;
} return ;
}

HDU3829(KB10-J 二分图最大独立集)的更多相关文章

  1. HDU 3829 - Cat VS Dog (二分图最大独立集)

    题意:动物园有n只猫和m条狗,现在有p个小孩,他们有的喜欢猫,有的喜欢狗,其中喜欢猫的一定不喜欢狗,喜欢狗的一定不喜欢猫.现在管理员要从动物园中移除一些动物,如果一个小孩喜欢的动物留了下来而不喜欢的动 ...

  2. BZOJ3175:[TJOI2013]攻击装置(二分图最大独立集)

    Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2),(x-2,y-1),(x+1,y-2), ...

  3. [luoguP3355] 骑士共存问题(二分图最大独立集)

    传送门 模型 二分图最大独立集,转化为二分图最大匹配,从而用最大流解决. 实现 首先把棋盘黑白染色,使相邻格子颜色不同. 把所有可用的黑色格子看做二分图X集合中顶点,可用的白色格子看做Y集合顶点. 建 ...

  4. 洛谷 - P3033 - 牛的障碍Cow Steeplechase - 二分图最大独立集

    https://www.luogu.org/fe/problem/P3033 二分图最大独立集 注意输入的时候控制x1,y1,x2,y2的相对大小. #include<bits/stdc++.h ...

  5. 洛谷 - P5030 - 长脖子鹿放置 - 二分图最大独立集

    https://www.luogu.org/problemnew/show/P5030 写的第一道黑色题,图建对了. 隐约觉得互相攻击要连边,规定从奇数行流向偶数行. 二分图最大独立集=二分图顶点总数 ...

  6. 【Codevs1922】骑士共存问题(最小割,二分图最大独立集转最大匹配)

    题意: 在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入. 对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个 ...

  7. UVA-12083 Guardian of Decency 二分图 最大独立集

    题目链接:https://cn.vjudge.net/problem/UVA-12083 题意 学校组织去郊游,选择最多人数,使得任意两个人之间不能谈恋爱 不恋爱条件是高差大于40.同性.喜欢的音乐风 ...

  8. TopCoder12808 「SRM594Medium」FoxAndGo3 二分图最大独立集

    问题描述 一个 \(N \times N\) 围棋棋盘,任意两个白子不相邻,你要加入若干个黑子并提出白子,最大化空格数目. submit 题解 显然最终棋盘的局面不能够一个白子和它周围的空格都是空的, ...

  9. 长脖子鹿放置【洛谷P5030】二分图最大独立集变形题

    题目背景 众周所知,在西洋棋中,我们有城堡.骑士.皇后.主教和长脖子鹿. 题目描述 如图所示,西洋棋的“长脖子鹿”,类似于中国象棋的马,但按照“目”字攻击,且没有中国象棋“别马腿”的规则.(因为长脖子 ...

随机推荐

  1. vscode卡死问题

    网上有人说是和淘宝镜像冲突,也不知啥原因,接下来一下操作会好点: 文件->首选项->设置,搜索search.followSymlinks,把对勾去掉就行 1.修复vs code 造成 rg ...

  2. CentOS的ssh sftp配置及权限设置[转载-验证可用]

    从技术角度来分析,几个要求:1.从安全方面看,sftp会更安全一点2.线上服务器提供在线服务,对用户需要控制,只能让用户在自己的home目录下活动3.用户只能使用sftp,不能ssh到机器进行操作 提 ...

  3. maven封装jar包遇到的问题

    使用eclipse编译后可以生成jar包,使用mvn clean package指令打包报错,错误如下:No compiler is provided in this environment. Per ...

  4. 使用bash echo 输出回车转义

    输出回车 [root@~]# echo -e 'hello\n'hello 回车去掉 [root@~]# echo -n hello hello[root@~]#

  5. vue教程1-01 v-model 一般表单元素(input) 双向数据绑定

    vue教程1-01   v-model 一般表单元素(input) 双向数据绑定el:'#box',//这里放的是选择器.不然会不生效 <!DOCTYPE html> <html l ...

  6. PHP:WampServer下如何安装多个版本的PHP、mysql、apache

    作为Web开发人员,在机器上安装不同版本的php,apache和mysql有时是很有必要的. 今天,我在调试一套PHP程序的时候,该程序中使用的某些函数在低版本中无法使用,所以只能在搞个高版本的php ...

  7. JAVA框架之Spring【Spring事务详解】

    spring提供的事务管理可以分为两类:编程式的和声明式的.编程式的,比较灵活,但是代码量大,存在重复的代码比较多:声明式的比编程式的更灵活.编程式主要使用transactionTemplate.省略 ...

  8. tensorflow 根据节点获取节点前的整张图

    1.先获取节点 output_layer = self.model.get_pooled_output() logits = self.tf_instance.matmul(output_layer, ...

  9. C++版Hello World

    代码 #include <iostream> using namespace std; int main() { cout << ; } 开头那两句代码 暂时先记住吧 #inc ...

  10. redis学习(二) redis数据结构介绍以及常用命令

    redis数据结构介绍 我们已经知道redis是一个基于key-value数据存储的数据结构数据库,这里的key指的是string类型,而对应的value则可以是多样的数据结构.其中包括下面五种类型: ...