今天为了熟悉axiLite的自定义ip核设计,

把LED和SW的往AXI总线输入输出定义在一个ip核中,

BD设计如下:

ip核顶层文件(增加了LED_Out和SW_In的定义)mygpio_v1.0.v:

	module mygpio_v1_0 #
(
// Users to add parameters here // User parameters ends
// Do not modify the parameters beyond this line // Parameters of Axi Slave Bus Interface S00_AXI
parameter integer C_S00_AXI_DATA_WIDTH = 32,
parameter integer C_S00_AXI_ADDR_WIDTH = 4
)
(
// Users to add ports here
//*****************my code***********************************
input wire [7:0] SW_In,
output wire [7:0] LED_Out,
// User ports ends
// Do not modify the ports beyond this line // Ports of Axi Slave Bus Interface S00_AXI
input wire s00_axi_aclk,
input wire s00_axi_aresetn,
input wire [C_S00_AXI_ADDR_WIDTH-1 : 0] s00_axi_awaddr,
input wire [2 : 0] s00_axi_awprot,
input wire s00_axi_awvalid,
output wire s00_axi_awready,
input wire [C_S00_AXI_DATA_WIDTH-1 : 0] s00_axi_wdata,
input wire [(C_S00_AXI_DATA_WIDTH/8)-1 : 0] s00_axi_wstrb,
input wire s00_axi_wvalid,
output wire s00_axi_wready,
output wire [1 : 0] s00_axi_bresp,
output wire s00_axi_bvalid,
input wire s00_axi_bready,
input wire [C_S00_AXI_ADDR_WIDTH-1 : 0] s00_axi_araddr,
input wire [2 : 0] s00_axi_arprot,
input wire s00_axi_arvalid,
output wire s00_axi_arready,
output wire [C_S00_AXI_DATA_WIDTH-1 : 0] s00_axi_rdata,
output wire [1 : 0] s00_axi_rresp,
output wire s00_axi_rvalid,
input wire s00_axi_rready
);
// Instantiation of Axi Bus Interface S00_AXI
mygpio_v1_0_S00_AXI # (
.C_S_AXI_DATA_WIDTH(C_S00_AXI_DATA_WIDTH),
.C_S_AXI_ADDR_WIDTH(C_S00_AXI_ADDR_WIDTH)
) mygpio_v1_0_S00_AXI_inst (
//*****************************my code***************************
.SW_In(SW_In),
.LED_Out(LED_Out),
.S_AXI_ACLK(s00_axi_aclk),
.S_AXI_ARESETN(s00_axi_aresetn),
.S_AXI_AWADDR(s00_axi_awaddr),
.S_AXI_AWPROT(s00_axi_awprot),
.S_AXI_AWVALID(s00_axi_awvalid),
.S_AXI_AWREADY(s00_axi_awready),
.S_AXI_WDATA(s00_axi_wdata),
.S_AXI_WSTRB(s00_axi_wstrb),
.S_AXI_WVALID(s00_axi_wvalid),
.S_AXI_WREADY(s00_axi_wready),
.S_AXI_BRESP(s00_axi_bresp),
.S_AXI_BVALID(s00_axi_bvalid),
.S_AXI_BREADY(s00_axi_bready),
.S_AXI_ARADDR(s00_axi_araddr),
.S_AXI_ARPROT(s00_axi_arprot),
.S_AXI_ARVALID(s00_axi_arvalid),
.S_AXI_ARREADY(s00_axi_arready),
.S_AXI_RDATA(s00_axi_rdata),
.S_AXI_RRESP(s00_axi_rresp),
.S_AXI_RVALID(s00_axi_rvalid),
.S_AXI_RREADY(s00_axi_rready)
); // Add user logic here // User logic ends endmodule

ip核实现文件mygpio_v1_0_S00_AXI.v:

	module mygpio_v1_0_S00_AXI #
(
// Users to add parameters here // User parameters ends
// Do not modify the parameters beyond this line // Width of S_AXI data bus
parameter integer C_S_AXI_DATA_WIDTH = 32,
// Width of S_AXI address bus
parameter integer C_S_AXI_ADDR_WIDTH = 4
)
(
// Users to add ports here
//*********************my code ****************************************
input wire [7:0] SW_In,
output wire [7:0] LED_Out,
// User ports ends
// Do not modify the ports beyond this line // Global Clock Signal
input wire S_AXI_ACLK,
// Global Reset Signal. This Signal is Active LOW
input wire S_AXI_ARESETN,
// Write address (issued by master, acceped by Slave)
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
// Write channel Protection type. This signal indicates the
// privilege and security level of the transaction, and whether
// the transaction is a data access or an instruction access.
input wire [2 : 0] S_AXI_AWPROT,
// Write address valid. This signal indicates that the master signaling
// valid write address and control information.
input wire S_AXI_AWVALID,
// Write address ready. This signal indicates that the slave is ready
// to accept an address and associated control signals.
output wire S_AXI_AWREADY,
// Write data (issued by master, acceped by Slave)
input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
// Write strobes. This signal indicates which byte lanes hold
// valid data. There is one write strobe bit for each eight
// bits of the write data bus.
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
// Write valid. This signal indicates that valid write
// data and strobes are available.
input wire S_AXI_WVALID,
// Write ready. This signal indicates that the slave
// can accept the write data.
output wire S_AXI_WREADY,
// Write response. This signal indicates the status
// of the write transaction.
output wire [1 : 0] S_AXI_BRESP,
// Write response valid. This signal indicates that the channel
// is signaling a valid write response.
output wire S_AXI_BVALID,
// Response ready. This signal indicates that the master
// can accept a write response.
input wire S_AXI_BREADY,
// Read address (issued by master, acceped by Slave)
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
// Protection type. This signal indicates the privilege
// and security level of the transaction, and whether the
// transaction is a data access or an instruction access.
input wire [2 : 0] S_AXI_ARPROT,
// Read address valid. This signal indicates that the channel
// is signaling valid read address and control information.
input wire S_AXI_ARVALID,
// Read address ready. This signal indicates that the slave is
// ready to accept an address and associated control signals.
output wire S_AXI_ARREADY,
// Read data (issued by slave)
output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
// Read response. This signal indicates the status of the
// read transfer.
output wire [1 : 0] S_AXI_RRESP,
// Read valid. This signal indicates that the channel is
// signaling the required read data.
output wire S_AXI_RVALID,
// Read ready. This signal indicates that the master can
// accept the read data and response information.
input wire S_AXI_RREADY
); // AXI4LITE signals
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr;
reg axi_awready;
reg axi_wready;
reg [1 : 0] axi_bresp;
reg axi_bvalid;
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr;
reg axi_arready;
reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata;
reg [1 : 0] axi_rresp;
reg axi_rvalid; // Example-specific design signals
// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
// ADDR_LSB is used for addressing 32/64 bit registers/memories
// ADDR_LSB = 2 for 32 bits (n downto 2)
// ADDR_LSB = 3 for 64 bits (n downto 3)
localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
localparam integer OPT_MEM_ADDR_BITS = 1;
//----------------------------------------------
//-- Signals for user logic register space example
//*********************my code ****************************************
wire [31:0] reg0_wire;
reg [31:0] SW_Reg0;
reg [31:0] SW_Reg1;
//------------------------------------------------
//-- Number of Slave Registers 4
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3;
wire slv_reg_rden;
wire slv_reg_wren;
reg [C_S_AXI_DATA_WIDTH-1:0] reg_data_out;
integer byte_index; // I/O Connections assignments assign S_AXI_AWREADY = axi_awready;
assign S_AXI_WREADY = axi_wready;
assign S_AXI_BRESP = axi_bresp;
assign S_AXI_BVALID = axi_bvalid;
assign S_AXI_ARREADY = axi_arready;
assign S_AXI_RDATA = axi_rdata;
assign S_AXI_RRESP = axi_rresp;
assign S_AXI_RVALID = axi_rvalid;
// Implement axi_awready generation
// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
// de-asserted when reset is low. always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_awready <= 1'b0;
end
else
begin
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID)
begin
// slave is ready to accept write address when
// there is a valid write address and write data
// on the write address and data bus. This design
// expects no outstanding transactions.
axi_awready <= 1'b1;
end
else
begin
axi_awready <= 1'b0;
end
end
end // Implement axi_awaddr latching
// This process is used to latch the address when both
// S_AXI_AWVALID and S_AXI_WVALID are valid. always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_awaddr <= 0;
end
else
begin
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID)
begin
// Write Address latching
axi_awaddr <= S_AXI_AWADDR;
end
end
end // Implement axi_wready generation
// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is
// de-asserted when reset is low. always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_wready <= 1'b0;
end
else
begin
if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID)
begin
// slave is ready to accept write data when
// there is a valid write address and write data
// on the write address and data bus. This design
// expects no outstanding transactions.
axi_wready <= 1'b1;
end
else
begin
axi_wready <= 1'b0;
end
end
end // Implement memory mapped register select and write logic generation
// The write data is accepted and written to memory mapped registers when
// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
// select byte enables of slave registers while writing.
// These registers are cleared when reset (active low) is applied.
// Slave register write enable is asserted when valid address and data are available
// and the slave is ready to accept the write address and write data.
assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID; always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
// slv_reg0 <= 0;
slv_reg1 <= 0;
slv_reg2 <= 0;
slv_reg3 <= 0;
end
else begin
if (slv_reg_wren)
begin
case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
//*********************my modify ****************************************
// 2'h0:
// for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
// if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 0
// slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
// end
2'h1:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 1
slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
2'h2:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 2
slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
2'h3:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 3
slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
default : begin
slv_reg0 <= slv_reg0;
slv_reg1 <= slv_reg1;
slv_reg2 <= slv_reg2;
slv_reg3 <= slv_reg3;
end
endcase
end
end
end // Implement write response logic generation
// The write response and response valid signals are asserted by the slave
// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.
// This marks the acceptance of address and indicates the status of
// write transaction. always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_bvalid <= 0;
axi_bresp <= 2'b0;
end
else
begin
if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
begin
// indicates a valid write response is available
axi_bvalid <= 1'b1;
axi_bresp <= 2'b0; // 'OKAY' response
end // work error responses in future
else
begin
if (S_AXI_BREADY && axi_bvalid)
//check if bready is asserted while bvalid is high)
//(there is a possibility that bready is always asserted high)
begin
axi_bvalid <= 1'b0;
end
end
end
end // Implement axi_arready generation
// axi_arready is asserted for one S_AXI_ACLK clock cycle when
// S_AXI_ARVALID is asserted. axi_awready is
// de-asserted when reset (active low) is asserted.
// The read address is also latched when S_AXI_ARVALID is
// asserted. axi_araddr is reset to zero on reset assertion. always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_arready <= 1'b0;
axi_araddr <= 32'b0;
end
else
begin
if (~axi_arready && S_AXI_ARVALID)
begin
// indicates that the slave has acceped the valid read address
axi_arready <= 1'b1;
// Read address latching
axi_araddr <= S_AXI_ARADDR;
end
else
begin
axi_arready <= 1'b0;
end
end
end // Implement axi_arvalid generation
// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_ARVALID and axi_arready are asserted. The slave registers
// data are available on the axi_rdata bus at this instance. The
// assertion of axi_rvalid marks the validity of read data on the
// bus and axi_rresp indicates the status of read transaction.axi_rvalid
// is deasserted on reset (active low). axi_rresp and axi_rdata are
// cleared to zero on reset (active low).
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_rvalid <= 0;
axi_rresp <= 0;
end
else
begin
if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
begin
// Valid read data is available at the read data bus
axi_rvalid <= 1'b1;
axi_rresp <= 2'b0; // 'OKAY' response
end
else if (axi_rvalid && S_AXI_RREADY)
begin
// Read data is accepted by the master
axi_rvalid <= 1'b0;
end
end
end // Implement memory mapped register select and read logic generation
// Slave register read enable is asserted when valid address is available
// and the slave is ready to accept the read address.
assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
always @(*)
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
reg_data_out <= 0;
end
else
begin
// Address decoding for reading registers
case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
2'h0 : reg_data_out <= slv_reg0;
2'h1 : reg_data_out <= slv_reg1;
2'h2 : reg_data_out <= slv_reg2;
2'h3 : reg_data_out <= slv_reg3;
default : reg_data_out <= 0;
endcase
end
end // Output register or memory read data
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_rdata <= 0;
end
else
begin
// When there is a valid read address (S_AXI_ARVALID) with
// acceptance of read address by the slave (axi_arready),
// output the read dada
if (slv_reg_rden)
begin
axi_rdata <= reg_data_out; // register read data
end
end
end
//*********************my code ****************************************
// Add user logic here
led_ul U1(
.S_AXI_ACLK(S_AXI_ACLK),
.slv_reg_wren(slv_reg_wren),
.axi_awaddr(axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB]),
.S_AXI_WDATA(S_AXI_WDATA),
.aresetn(S_AXI_ARESETN),
.LED(LED_Out)
); assign reg0_wire = slv_reg0; sw_ul U2(
.S_AXI_ACLK(S_AXI_ACLK),
.slv_reg_rden(slv_reg_rden),
.axi_araddr(axi_araddr[3:2]),
.aresetn(S_AXI_ARESETN),
.SW_In(SW_In),
.rdata(reg0_wire)
); // always @(slv_reg_rden or slv_reg0 or slv_reg1)
// begin
// case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
// 2'h0 : reg_data_out <= slv_reg0;
// 2'h1 : reg_data_out <= slv_reg1;
// default:reg_data_out <= 0;
// endcase
// end // User logic ends endmodule

在这个文件中,我注释了AXI总线在写数据时对于slv_reg0写的定义,因为在我们的用户代码中使用一条reg0_wire将slv_reg0连到了sw_ul子核中,并且在子核中对reg0定义写操作(即将sw的状态输出到slv_reg0),然后另一段代码会将其放入reg_data_out,最后在slv_reg_rden线的输出为1时,它会进一步被送往axi_rdata,并通过数据总线S_AXI_RDATA输出。

ip核内包含的子文件sw_ul.v

module sw_ul(
input S_AXI_ACLK,
input slv_reg_rden,
input [1:0] axi_araddr,
input aresetn,
input [7:0] SW_In,
output reg [31:0] rdata
);
reg [31:0] SW_Reg0;
reg [31:0] SW_Reg1;
always @(posedge S_AXI_ACLK)
begin
if ( aresetn == 1'b0 )
begin
SW_Reg0 <= 0;
SW_Reg1 <= 0;
rdata <= 0;
end
else
begin
if(slv_reg_rden)
begin
if(axi_araddr == 2'h0)
begin
SW_Reg0 <= SW_In;
SW_Reg1 <= SW_Reg0;
rdata[7:0] <= SW_Reg1[7:0];
end
end end
end
endmodule

ip核内包含的子文件led_ul.v

module led_ul(
input S_AXI_ACLK,
input slv_reg_wren,
input [1:0] axi_awaddr,
input [31:0] S_AXI_WDATA,
input aresetn,
output reg [7:0] LED
); always @( posedge S_AXI_ACLK )
begin
if( aresetn == 1'b0 )
begin
LED <= 8'b10011001;
end
else
begin
if (slv_reg_wren && (axi_awaddr == 2'h1))
begin
LED <= S_AXI_WDATA[7:0];
end
// LED <= 8'b11111111;
// if (slv_reg_wren)
// begin
// case(axi_awaddr)
// 2'h1:
// begin
// LED <= S_AXI_WDATA[7:0];
// LED <= 8'b00000001;
// end
// 2'h0:
// begin
// LED <= 8'b00000000;
// end
// default:
// begin
// LED <= 8'b11111111;
// end
// endcase
// end
end
end endmodule

EDK中standalone程序:

#include <stdio.h>
#include "xparameters.h"
#include "xil_io.h"
#include "mygpio.h"
#include "platform.h" int main()
{
u32 inData = 0;
init_platform();
while(1)
{
inData = Xil_In32(XPAR_MYGPIO_0_S00_AXI_BASEADDR);
xil_printf("SW0 data is 0x%x\n\r",inData);
Xil_Out32(XPAR_MYGPIO_0_S00_AXI_BASEADDR+MYGPIO_S00_AXI_SLV_REG1_OFFSET,inData);
//inData = Xil_In32(XPAR_MYGPIO_0_S00_AXI_BASEADDR+1);
//xil_printf("SW1 data is 0x%x\n\r",inData);
//MYGPIO_mWriteReg(XPAR_MYGPIO_0_S00_AXI_BASEADDR,0,inData);
//sleep(1);
}
return 0;
}

刚开始一直都测试不成功,一直得不到ip核中axi_araddr等于1的状态(即写第一个slv_reg1),后来看到了MYGPIO_S00_AXI_SLV_REG1_OFFSET=4,寄存器设置时设置的是32b,就是4Byte,灯只用到了其中最后的8bit,地址从0x43C00000开始,编号为1的寄存器地址应该是0x43C00004(存储器字长=1B)。(我们的ip核中,reg0用来存放sw读出的数据,而reg1用来从axi总线给led灯传送数据)。

参考文献:懒兔子教程

Learn ZYNC (5)的更多相关文章

  1. Learn ZYNC (6)

    最近在关注的问题是怎么样从ps端丢数据到ram, 然后用ip核进行处理后再输送到ram,ps端可以读取. 参考文献:[OpenHW参赛手记]AXI-Stream接口开发详细流程 首先按照作者的探索思路 ...

  2. Learn ZYNC (2)

    AXI HP接口的DMA+GIC编程(参照博客) 参照文档:UG873,博客文档 参考设计代码文件:ug873源码 我的Vivado+SDK工程文件打包(60+M) 我的DMA驱动程序(已完成) Vi ...

  3. Learn ZYNC (4)

    最近整理出一些适合学习zed的实例(所有的例程都基于Vivado2013.4开发环境) (1)关于zed双核的测试案例: 官方链接:地址1.11.standalone,地址1.12.linux 修改源 ...

  4. Atitit learn by need 需要的时候学与预先学习知识图谱路线图

    Atitit learn by need 需要的时候学与预先学习知识图谱路线图 1. 体系化是什么 架构 知识图谱路线图思维导图的重要性11.1. 体系就是架构21.2. 只见树木不见森林21.3. ...

  5. Python 爬取所有51VOA网站的Learn a words文本及mp3音频

    Python 爬取所有51VOA网站的Learn a words文本及mp3音频 #!/usr/bin/env python # -*- coding: utf-8 -*- #Python 爬取所有5 ...

  6. [转载]VIM 教程:Learn Vim Progressively

    文章来源:http://yannesposito.com/Scratch/en/blog/Learn-Vim-Progressively/   Learn Vim Progressively   TL ...

  7. some tips learn from work experience

    1.you can't avoid office politics 2.you'll never have a job which you "can't quit" - if yo ...

  8. Java-集合(没做出来)第四题 (List)写一个函数reverseList,该函数能够接受一个List,然后把该List 倒序排列。 例如: List list = new ArrayList(); list.add(“Hello”); list.add(“World”); list.add(“Learn”); //此时list 为Hello World Learn reverseL

    没做出来 第四题 (List)写一个函数reverseList,该函数能够接受一个List,然后把该List 倒序排列. 例如: List list = new ArrayList(); list.a ...

  9. Learn RxJava

    Learn RxJava http://reactivex.io/documentation/operators.html https://github.com/ReactiveX/RxJava/wi ...

随机推荐

  1. JAVA解析XML的四种方法

    XML文件:test.xml <?xml version="1.0" encoding="UTF-8"?> <employees> &l ...

  2. How do I enable log4net internal debugging?

    http://logging.apache.org/log4net/release/faq.html

  3. 如果asp.net mvc中某个action被执行了两次,请检查是不是以下的原因

    注释 <link rel="icon" href="#"> 这一句后试试

  4. [转]Struts2工作原理

    Struts2请求响应流程: 在struts2的应用中,从用户请求到服务器返回相应响应给用户端的过程中,包含了许多组件如:Controller.ActionProxy.ActionMapping.Co ...

  5. 无法启动"D\projects\hello\Debug\hello.exe" 系统找不到指定的文件。[LINK : fatal error LNK1123: 转换到 COFF 期间失败: 文件无效或损坏]

    这两天安装Visual Studio遇到这样的一个问题,用自己的电脑和公司的电脑都出现同样的问题.两台电脑都是新系统,按理来说是没有问题的.但是一出现问题,对于我这个小白来说,还是耗费了挺多精力都无果 ...

  6. SpringMVC与Ajax交互

    1 springmvc和ajax的交互 1.1  请求字符串响应json 客户端发送的数据:key=value&key1=value1 响应回来:json 1.1.1json的支持jar包 1 ...

  7. MyEclipse无法删除项目下的文件

    想删除老版本的jar包或文件,却怎么也删不了, 总是提示Problems encountered while deleting resources. Could not delete 后来关闭myec ...

  8. VR系统的组成

    转载请声明转载地址:http://www.cnblogs.com/Rodolfo/,违者必究. 一个典型的虚拟现实系统主要由计算机.输入/输出设备.应用软件和数据库等部分组成. 1.计算机 在虚拟现实 ...

  9. js串讲整理

    js子级窗口向父级窗口传值 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http ...

  10. 【Linux】Linux中常用操作命令

    博客已转移,请借一步说话,http://www.weixuehao.com/archives/25 Linux简介及Ubuntu安装 常见指令 系统管理命令 打包压缩相关命令 关机/重启机器 Linu ...