bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
很明显最后的结果应该是一个斜率递增的结果,那么我们先按斜率排序,然后用单调栈维护,如果要加入的线i和last-1的交点在i和last的左侧,就证明last这条线已经完全被覆盖了,那么从栈中删除,直接维护下去就得到 了结果,注意一下斜率相同的情况
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0) using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f; struct line{
double k,b;
int id;
bool operator<(const line &rhs)const{
if(k!=rhs.k)return k<rhs.k;
return b<rhs.b;
}
}l[N];
bool cmp(int a,int b)
{
return l[a].id<l[b].id;
}
int q[N];
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%lf%lf",&l[i].k,&l[i].b);
l[i].id=i+;
}
sort(l,l+n);
// for(int i=0;i<n;i++)printf("%f %f\n",l[i].k,l[i].b);
int head=,last=;q[head]=;
for(int i=;i<n;i++)
{
if(head<=last&&l[q[last]].k==l[i].k)last--;
while(head<last)
{
double x=(l[i].b-l[q[last-]].b)/(l[q[last-]].k-l[i].k);
double y=l[i].k*x+l[i].b;
double x1=(l[q[last]].b-l[q[last-]].b)/(l[q[last-]].k-l[q[last]].k);
double y1=l[q[last]].k*x+l[q[last]].b;
// printf("%f %f %f %f\n",l[i].k,l[i].b,l[q[last-1]].k,l[q[last-1]].b);
if(x<=x1)last--;
else break;
}
q[++last]=i;
// for(int j=head;j<=last;j++)printf("%d ",q[j]);
// puts("+++");
}
sort(q+head,q+last+,cmp);
for(int i=head;i<=last;i++)printf("%d ",l[q[i]].id);
return ;
}
/********************
7
-1 0
1 0
0 0
0 -1
0 -2
-1 -1
1 -1
********************/
bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳的更多相关文章
- bzoj1007 [HNOI2008]水平可见直线——单调栈
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的 ...
- BZOJ1007: [HNOI2008]水平可见直线(单调栈)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8638 Solved: 3327[Submit][Status][Discuss] Descripti ...
- [HNOI2008]水平可见直线 单调栈
题目描述:在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=- ...
- bzoj1007/luogu3194 水平可见直线 (单调栈)
先按斜率从小到大排序,然后如果排在后面的点B和前面的点A的交点是P,那B会把A在P的右半段覆盖掉,A会把B在P的左半段覆盖掉. 然后如果我们现在又进来了一条线,它跟上一条的交点还在上一条和上上条的左边 ...
- [bzoj1007][HNOI2008]水平可见直线_单调栈
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...
- BZOJ1007:[HNOI2008]水平可见直线(计算几何)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- [BZOJ1007] [HNOI2008] 水平可见直线 (凸包)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x ...
- [BZOJ1007](HNOI2008)水平可见直线(半平面交习题)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线: ...
- bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com
Description Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必 ...
随机推荐
- Selenium Page Object(PO)设计模式
Webdriver UI自动化测试火了好几年了,具体怎么设计自动化测试测试工程,组织测试用例完全凭借着自己的经验和习惯. 最近忽然听说了Page Object(简称PO)火了起来,也有面试的时候被问到 ...
- python全栈开发从入门到放弃之socket并发编程之协程
一.为什么会有协程 本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态 cpu正在运行一个任务,会在两种情 ...
- centos7使用中文输入法
centos7自带中文输入法,可能我们在安装时会跳过选择汉语拼音,我们来重新设置一下吧 假如你在命令行界面,输入Ctrl+Alt+F1进入图形界面 点击左上角系统工具 --> 设置 --&g ...
- HBase1.2.6 预分区后,数据不进入预定分区的一个 bug
rowkey 如下: 19000015115042900001511504390000151150449000015115045900001511504690000151150479000015115 ...
- Web前端页面的浏览器兼容性测试心得(二)搭建原汁原味的IE8测试环境
如果你做的页面被老板或PM要求兼容IE8,你就值得同情了.IE8不支持HTML5,在2017年的前端界,开发者不涉及HTML5标准简直寸步难行.然而,有一个可怕的事实客观存在,那就是IE8是Win7系 ...
- $Python常用内置函数典型用法
Python中有许多功能丰富的内置函数,本文基于Python 2.7,就常用的一些函数的典型用法做一些积累,不断更新中. sorted函数的三种用法 # coding:utf-8 # sorted函数 ...
- PHP+MySQL数据库编程的步骤
第一步:PHP连接MySQL服务器 第二步:选择当前要操作的数据库 第三步:设置请求或返回的数据的字符集 第四步:执行各种SQL语句. PHP连接MySQL服务器 1.mysql_connect() ...
- Topic与Queue
总结自:https://blog.csdn.net/qq_21033663/article/details/52458305 队列(Queue)和主题(Topic)是JMS支持的两种消息传递模型: 1 ...
- saltstack之keepalived的安装配置
使用saltstack编译安装keepalived: 创建相应的目录,并在目录下创建相应的sls配置文件 [root@node1 ~]# mkdir /srv/salt/prod/keepalived ...
- 20145312 《Java程序设计》第九周学习总结
20145312 <Java程序设计>第九周学习总结 学习笔记 Chapter 16整合数据库 16.1 JDBC入门 16.1.1 JDBC简介 SUN公司为了简化.统一对数据库的操作, ...