枚举,预处理。

预处理前缀$gcd$与后缀$gcd$,枚举删哪一个即可。

#include <bits/stdc++.h>
using namespace std; int T,n;
long long a[];
long long L[];
long long R[]; long long gcd(long long a,long long b)
{
if(b==) return a;
return gcd(b,a%b);
} int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%lld",&a[i]);
} for(int i=;i<=n;i++)
{
L[i] = gcd(L[i-],a[i]);
} for(int i=n;i>=;i--)
{
R[i] = gcd(R[i+],a[i]);
} long long ans=; for(int i=;i<=n;i++)
{
ans=max(ans,gcd(L[i-],R[i+]));
} printf("%lld\n",ans); }
return ;
}

HDU 6025 Coprime Sequence的更多相关文章

  1. HDU - 6025 Coprime Sequence(gcd+前缀后缀)

    Do you know what is called ``Coprime Sequence''? That is a sequence consists of nnpositive integers, ...

  2. HDU - 6025 Coprime Sequence(前缀gcd+后缀gcd)

    题意:去除数列中的一个数字,使去除后数列中所有数字的gcd尽可能大. 分析:这个题所谓的Coprime Sequence,就是个例子而已嘛,题目中没有任何语句说明给定的数列所有数字gcd一定为1→_→ ...

  3. HDU6025 Coprime Sequence —— 前缀和 & 后缀和

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6025 Coprime Sequence Time Limit: 2000/1000 MS (Java/ ...

  4. HDU 5860 Death Sequence(死亡序列)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  5. HDU 1711 Number Sequence(数列)

    HDU 1711 Number Sequence(数列) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...

  6. HDU 1005 Number Sequence(数列)

    HDU 1005 Number Sequence(数列) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...

  7. HDU 5860 Death Sequence(递推)

    HDU 5860 Death Sequence(递推) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5860 Description You ...

  8. HDU 1560 DNA sequence(DNA序列)

    HDU 1560 DNA sequence(DNA序列) Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K  ...

  9. HDU 1005 Number Sequence(数论)

    HDU 1005 Number Sequence(数论) Problem Description: A number sequence is defined as follows:f(1) = 1, ...

随机推荐

  1. C语言 结构体传值与传址分析

    /********************************************************************** * 版权所有 (C)2017, Wang maochun ...

  2. 子集系列(一) 传统subset 问题,例 [LeetCode] Subset, Subset II, Bloomberg 的一道面试题

    引言 Coding 问题中有时会出现这样的问题:给定一个集合,求出这个集合所有的子集(所谓子集,就是包含原集合中的一部分元素的集合). 或者求出满足一定要求的子集,比如子集中元素总和为定值,子集元素个 ...

  3. 2049: [Sdoi2008]Cave 洞穴勘测

    2049: [Sdoi2008]Cave 洞穴勘测 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 7475  Solved: 3499 [Submi ...

  4. 【专题】数位DP

    [资料] ★记忆化搜索:数位dp总结 之 从入门到模板 by wust_wenhao 论文:浅谈数位类统计问题 数位计数问题解法研究 [记忆化搜索] 数位:数字从低位到高位依次为0~len-1. 高位 ...

  5. 【leetcode 简单】第十题 实现strStr()

    实现 strStr() 函数. 给定一个 haystack 字符串和一个 needle 字符串,在 haystack 字符串中找出 needle 字符串出现的第一个位置 (从0开始).如果不存在,则返 ...

  6. 使用webpack配置react并添加到flask应用

    学习react,配置是很痛苦的一关,虽然现在有了create-react-app这样方便的工具,但是必须要自己配置一遍,才能更好地进行项目开发. 首先要明确一个概念:react的文件必须经过编译才能被 ...

  7. yii2-widget-fileinput英文文档翻译

    源地址:http://plugins.krajee.com/file-input 该插件是为bootstrap开发的增强版h5文件上传插件,具有多文件预览,多文件选择等功能.该插件提供了基于boots ...

  8. docker 升级后,配置 idea 连接 docker

    [root@A01-R02-I188-87 ~]# docker version Client: Version: 18.06.1-ce API version: 1.24 Go version: g ...

  9. 一个Servlet处理增删改查的方法

    处理的思路是在servlet中定义不同的增删改查方法,页面请求 的时候携带请求的参数,根据参数判断调用不同的方法. package cn.xm.small.Servlet; import java.i ...

  10. win32的回调函数

    [转]http://blog.csdn.net/w419675647/article/details/6599070 众所周知,win32的回调函数WndProc()是操作系统调用的函数,win32用 ...