RMQ

  RMQ(Range Maximum/Minimum Question)是指区间最值问题,在OI中较为常见,一般可以用ST表和线段树实现。

  ST表是基于倍增思想的一种打表方法,在确定区间范围和所有的值后利用倍增预处理出$2^k$长度的区间内的最值,然后$O(1)$查询。优点是查询快且操作简便,缺点是不能进行动态操作,只支持静态查询。

  Code:(POJ模板题

//It is made by HolseLee on 23rd July 2018
//POJ 3264
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<iomanip>
using namespace std;
const int N=5e4+;
int n,m,a[N];
int mx[N][],mi[N][];
inline int read()
{
char ch=getchar();int num=;bool flag=false;
while(ch<''||ch>''){if(ch=='-')flag=true;ch=getchar();}
while(ch>=''&&ch<=''){num=num*+ch-'';ch=getchar();}
return flag?-num:num;
}
void ready()
{
for(int j=;j<=;j++)
for(int i=;i<=n;i++)
if(i+(<<(j-))<=n){
mx[i][j]=max(mx[i][j-],mx[i+(<<(j-))][j-]);
mi[i][j]=min(mi[i][j-],mi[i+(<<(j-))][j-]);}
}
inline int quary(int l,int r)
{
int maxx=-,minn=;
int k=(int)(log((double)(r-l+))/log(2.0));
maxx=max(mx[l][k],mx[r-(<<k)+][k]);
minn=min(mi[l][k],mi[r-(<<k)+][k]);
return maxx-minn;
}
int main()
{
n=read();m=read();
memset(mx,-,sizeof(mx));
memset(mi,0x7f,sizeof(mi));
for(int i=;i<=n;i++){
a[i]=read();
mi[i][]=mx[i][]=a[i];}
ready();int x,y;
for(int i=;i<=m;i++){
x=read();y=read();
printf("%d\n",quary(x,y));}
return ;
}

  线段树就不用多说了,除了可以同时维护最大和最小值意外,还能维护更多信息,操作同样也方便,而且还支持动态操作。

  Code:

//It is made by HolseLee on 23rd July 2018
//POJ 3264
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<iomanip>
using namespace std;
const int N=5e4+;
int n,m,a[N];
struct Node{
int mx,mi;
Node(int xx=,int yy=)
{mx=xx;mi=yy;}
}seg[N<<];
inline int read()
{
char ch=getchar();int num=;bool flag=false;
while(ch<''||ch>''){if(ch=='-')flag=true;ch=getchar();}
while(ch>=''&&ch<=''){num=num*+ch-'';ch=getchar();}
return flag?-num:num;
}
inline void update(int rt)
{
seg[rt].mx=max(seg[rt<<].mx,seg[rt<<|].mx);
seg[rt].mi=min(seg[rt<<].mi,seg[rt<<|].mi);
}
inline void build(int l,int r,int rt)
{
if(l>r)return;
if(l==r){
seg[rt].mx=seg[rt].mi=a[l];return;}
int mid=(l+r)>>;
build(l,mid,rt<<);build(mid+,r,rt<<|);
update(rt);
}
inline Node quary(int l,int r,int rt,int L,int R)
{
Node ret(-,);
if(l>R||r<L)return ret;
if(L<=l&&r<=R){return seg[rt];}
int mid=(l+r)>>;
Node lc(-,);
Node rc(-,);
if(L<=mid)lc=quary(l,mid,rt<<,L,R);
if(R>mid)rc=quary(mid+,r,rt<<|,L,R);
ret.mx=max(lc.mx,rc.mx);
ret.mi=min(lc.mi,rc.mi);
return ret;
}
inline int get(int x,int y)
{
int maxx=quary(,n,,x,y).mx;
int minn=quary(,n,,x,y).mi;
return maxx-minn;
}
int main()
{
n=read();m=read();
for(int i=;i<=n;i++)
a[i]=read();
build(,n,);int x,y;
for(int i=;i<=m;i++){
x=read();y=read();
printf("%d\n",get(x,y));}
return ;
}

实现RMQ的两种常用方法的更多相关文章

  1. jQuery验证元素是否为空的两种常用方法

    这篇文章主要介绍了jQuery验证元素是否为空的两种常用方法,实例分析了两种常用的判断为空技巧,非常具有实用价值,需要的朋友可以参考下 本文实例讲述了jQuery验证元素是否为空的两种常用方法.分享给 ...

  2. 在Quartus II中分配管脚的两种常用方法

    在Quartus II中分配管脚的两种常用方法 示范程序 seg7_test.v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 /* * ...

  3. vue——props的两种常用方法

    vue--props的两种常用方法 1.实现父-->子的通信 举例如下: 父组件 parent.vue <children :channel="object1"> ...

  4. C#程序实现软件开机自动启动的两种常用方法

    C#/WPF/WinForm/.NET程序代码实现软件程序开机自动启动的两种常用方法函数的示例与实例带详细注释 方法一:将软件的快捷方式创建到计算机的自动启动目录下(不需要管理员权限) 1.必要引用 ...

  5. C#/WPF/WinForm/.NET程序代码实现软件程序开机自动启动的两种常用方法的示例与源码下载带详细注释-源码代码-注册表方式-启动目录快捷方式

    C#/WPF/WinForm/.NET程序代码实现软件程序开机自动启动的两种常用方法的示例与源码下载带详细注释-源码代码-注册表方式-启动目录快捷方式 C#实现自动启动的方法-两种方法 源码下载地址: ...

  6. Struts2中validate数据校验的两种常用方法

    本文主要介绍Struts2中validate数据校验的两种方法及Struts2常用校验器.  1.Action中的validate()方法 Struts2提供了一个Validateable接口,这个接 ...

  7. Android 高级UI设计笔记23:Android 夜间模式之 两种常用方法(降低屏幕亮度+替换theme)

    1. 夜间模式 所谓的夜间模式,就是能够根据不同的设定,呈现不同风格的界面给用户,而且晚上看着不伤眼睛.特别是一些新闻类App实现夜间模式是非常人性化的,增强用户体验. 2. 我根据网上的资料 以及自 ...

  8. html文本溢出显示省略字符的两种常用方法

    方法一:使用CSS溢出省略的方式解决 解决效果如下: css代码: display: -webkit-box; display: -moz-box; white-space: pre-wrap; wo ...

  9. Java连接oracle数据库的两种常用方法

    1. 使用thin连接 由于thin驱动都是纯Java代码,并且使用TCP/IP技术通过java的Socket连接上Oracle数据库,所以thin驱动是与平台无关的,你无需安装Oracle客户端,只 ...

随机推荐

  1. HDU 2619 完全剩余类 原根

    求有多少$i(<=n-1)$,使 $x^i  \mod n$的值为$[1,n-1]$,其实也就是满足完全剩余类的原根数量.之前好像在二次剩余的讲义PPT里看到这个过. 直接有个定理,如果模k下有 ...

  2. JVM学习三:JVM之类加载器之连接分析

    学习完类加载之加载篇后,让我们继续来看加载之连接,连接分为三个步骤:验证.准备和解析三步,我们将一一分析之. 连接就是将已经读入到内存的类的二进制数据合并到虚拟机的运行时环境中去. 类加载完毕之后进入 ...

  3. MongoDB常用方法

    一.查询 find方法 db.collection_name.find(); 查询所有的结果: select * from users; db.users.find(); 指定返回那些列(键): se ...

  4. ④ 设计模式的艺术-04.抽象工厂(Abstract Factory)模式

    抽象工厂模式 用来生产不同产品族的全部产品.(对于增加新的产品,无能为力:支持增加产品族) 抽象工厂模式是工厂方法模式的升级版本,在有多个业务品种.业务分类时,通过抽象工厂模式产生需要的对象是一种非常 ...

  5. Eng1—English daily notes

    English daily notes 2015年 4月 Phrases As a side note 作为附注,顺便说句题外话,和by the way意思相近,例句 As a side note, ...

  6. form表单设置input文本属性只读,不可更改

    记住一条好用的,设置readonly属性为true <input     readonly=''true"> 更多方法,转载: http://www.jb51.net/web/6 ...

  7. PHP脚本运行时间

    http://www.cnblogs.com/zqifa/p/php-16.html PHP设置脚本最大执行时间的三种方法 php.ini 中缺省的最长执行时间是 30 秒,这是由 php.ini 中 ...

  8. HTML表单属性与全局属性

    1.全局属性

  9. 一起来学redis(一)

    redis是一个开源的,高性能的,基于键值对的缓存与存储系统通过提供多种键值数据类型来适应不同场景下的缓存与存储需求. 同时redis的诸多高层级功能使其可以胜任消息队列,任务队列等不同的角色. 特性 ...

  10. 全面了解 Nginx 主要应用场景

    前言 本文只针对Nginx在不加载第三方模块的情况能处理哪些事情,由于第三方模块太多所以也介绍不完,当然本文本身也可能介绍的不完整,毕竟只是我个人使用过和了解到过得.所以还请见谅,同时欢迎留言交流 N ...