RMQ

  RMQ(Range Maximum/Minimum Question)是指区间最值问题,在OI中较为常见,一般可以用ST表和线段树实现。

  ST表是基于倍增思想的一种打表方法,在确定区间范围和所有的值后利用倍增预处理出$2^k$长度的区间内的最值,然后$O(1)$查询。优点是查询快且操作简便,缺点是不能进行动态操作,只支持静态查询。

  Code:(POJ模板题

//It is made by HolseLee on 23rd July 2018
//POJ 3264
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<iomanip>
using namespace std;
const int N=5e4+;
int n,m,a[N];
int mx[N][],mi[N][];
inline int read()
{
char ch=getchar();int num=;bool flag=false;
while(ch<''||ch>''){if(ch=='-')flag=true;ch=getchar();}
while(ch>=''&&ch<=''){num=num*+ch-'';ch=getchar();}
return flag?-num:num;
}
void ready()
{
for(int j=;j<=;j++)
for(int i=;i<=n;i++)
if(i+(<<(j-))<=n){
mx[i][j]=max(mx[i][j-],mx[i+(<<(j-))][j-]);
mi[i][j]=min(mi[i][j-],mi[i+(<<(j-))][j-]);}
}
inline int quary(int l,int r)
{
int maxx=-,minn=;
int k=(int)(log((double)(r-l+))/log(2.0));
maxx=max(mx[l][k],mx[r-(<<k)+][k]);
minn=min(mi[l][k],mi[r-(<<k)+][k]);
return maxx-minn;
}
int main()
{
n=read();m=read();
memset(mx,-,sizeof(mx));
memset(mi,0x7f,sizeof(mi));
for(int i=;i<=n;i++){
a[i]=read();
mi[i][]=mx[i][]=a[i];}
ready();int x,y;
for(int i=;i<=m;i++){
x=read();y=read();
printf("%d\n",quary(x,y));}
return ;
}

  线段树就不用多说了,除了可以同时维护最大和最小值意外,还能维护更多信息,操作同样也方便,而且还支持动态操作。

  Code:

//It is made by HolseLee on 23rd July 2018
//POJ 3264
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<iomanip>
using namespace std;
const int N=5e4+;
int n,m,a[N];
struct Node{
int mx,mi;
Node(int xx=,int yy=)
{mx=xx;mi=yy;}
}seg[N<<];
inline int read()
{
char ch=getchar();int num=;bool flag=false;
while(ch<''||ch>''){if(ch=='-')flag=true;ch=getchar();}
while(ch>=''&&ch<=''){num=num*+ch-'';ch=getchar();}
return flag?-num:num;
}
inline void update(int rt)
{
seg[rt].mx=max(seg[rt<<].mx,seg[rt<<|].mx);
seg[rt].mi=min(seg[rt<<].mi,seg[rt<<|].mi);
}
inline void build(int l,int r,int rt)
{
if(l>r)return;
if(l==r){
seg[rt].mx=seg[rt].mi=a[l];return;}
int mid=(l+r)>>;
build(l,mid,rt<<);build(mid+,r,rt<<|);
update(rt);
}
inline Node quary(int l,int r,int rt,int L,int R)
{
Node ret(-,);
if(l>R||r<L)return ret;
if(L<=l&&r<=R){return seg[rt];}
int mid=(l+r)>>;
Node lc(-,);
Node rc(-,);
if(L<=mid)lc=quary(l,mid,rt<<,L,R);
if(R>mid)rc=quary(mid+,r,rt<<|,L,R);
ret.mx=max(lc.mx,rc.mx);
ret.mi=min(lc.mi,rc.mi);
return ret;
}
inline int get(int x,int y)
{
int maxx=quary(,n,,x,y).mx;
int minn=quary(,n,,x,y).mi;
return maxx-minn;
}
int main()
{
n=read();m=read();
for(int i=;i<=n;i++)
a[i]=read();
build(,n,);int x,y;
for(int i=;i<=m;i++){
x=read();y=read();
printf("%d\n",get(x,y));}
return ;
}

实现RMQ的两种常用方法的更多相关文章

  1. jQuery验证元素是否为空的两种常用方法

    这篇文章主要介绍了jQuery验证元素是否为空的两种常用方法,实例分析了两种常用的判断为空技巧,非常具有实用价值,需要的朋友可以参考下 本文实例讲述了jQuery验证元素是否为空的两种常用方法.分享给 ...

  2. 在Quartus II中分配管脚的两种常用方法

    在Quartus II中分配管脚的两种常用方法 示范程序 seg7_test.v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 /* * ...

  3. vue——props的两种常用方法

    vue--props的两种常用方法 1.实现父-->子的通信 举例如下: 父组件 parent.vue <children :channel="object1"> ...

  4. C#程序实现软件开机自动启动的两种常用方法

    C#/WPF/WinForm/.NET程序代码实现软件程序开机自动启动的两种常用方法函数的示例与实例带详细注释 方法一:将软件的快捷方式创建到计算机的自动启动目录下(不需要管理员权限) 1.必要引用 ...

  5. C#/WPF/WinForm/.NET程序代码实现软件程序开机自动启动的两种常用方法的示例与源码下载带详细注释-源码代码-注册表方式-启动目录快捷方式

    C#/WPF/WinForm/.NET程序代码实现软件程序开机自动启动的两种常用方法的示例与源码下载带详细注释-源码代码-注册表方式-启动目录快捷方式 C#实现自动启动的方法-两种方法 源码下载地址: ...

  6. Struts2中validate数据校验的两种常用方法

    本文主要介绍Struts2中validate数据校验的两种方法及Struts2常用校验器.  1.Action中的validate()方法 Struts2提供了一个Validateable接口,这个接 ...

  7. Android 高级UI设计笔记23:Android 夜间模式之 两种常用方法(降低屏幕亮度+替换theme)

    1. 夜间模式 所谓的夜间模式,就是能够根据不同的设定,呈现不同风格的界面给用户,而且晚上看着不伤眼睛.特别是一些新闻类App实现夜间模式是非常人性化的,增强用户体验. 2. 我根据网上的资料 以及自 ...

  8. html文本溢出显示省略字符的两种常用方法

    方法一:使用CSS溢出省略的方式解决 解决效果如下: css代码: display: -webkit-box; display: -moz-box; white-space: pre-wrap; wo ...

  9. Java连接oracle数据库的两种常用方法

    1. 使用thin连接 由于thin驱动都是纯Java代码,并且使用TCP/IP技术通过java的Socket连接上Oracle数据库,所以thin驱动是与平台无关的,你无需安装Oracle客户端,只 ...

随机推荐

  1. 笔记(二)TabLayout + ViewPager + FragmentPagerAdapter 组合用法

    TabLayout的xml文件 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" ...

  2. 在Unity中实现屏幕空间反射Screen Space Reflection(1)

    本篇文章我会介绍一下我自己在Unity中实现的SSR效果 出发点是理解SSR效果的原理,因此最终效果不是非常完美的(代码都是够用就行),但是从学习的角度来说足以学习到SSR中的核心算法. 如果对核心算 ...

  3. css各种姿势的水平居中

    首先是最常用的,利用margin属性的auto来进行水平居中 margin: 0 auto; 其中0是指上下的margin,auto是左右的margin,margin这个属性的简写是按顺时针走的,也就 ...

  4. NYOJ 208 Supermarket (模拟+并查集)

    题目链接 描述 A supermarket has a set Prod of products on sale. It earns a profit px for each product x∈Pr ...

  5. MM(Majorize-Minimization, Minorize-Maximization)优化方法

    MM算法思想 MM算法是一种迭代优化方法,它利用函数的凸性来找到原函数的最大值或最小值.当原目标函数\(f(\theta)\)较难优化时,算法不直接对原目标函数求最优解,而去求解逼近于原目标函数的一个 ...

  6. Hash破解神器:Hashcat的简单使用

    Hash破解神器:Hashcat的简单使用 2014-06-10 21:02:42|  分类: 离线密码破解 |  标签:密码字典  rar密码破解  zip密码破解  密码破解  |举报|字号 订阅 ...

  7. 离散化&&逆序数对

    题目:http://www.fjutacm.com/Problem.jsp?pid=3087 #include<stdio.h> #include<string.h> #inc ...

  8. struct msghdr和struct cmsghdr【转载】

    理解struct msghdr当我第一次看到他时,他看上去似乎是一个需要创建的巨大的结构.但是不要怕.其结构定义如下:struct msghdr {    void         *msg_name ...

  9. IT人员必备linux安全运维之Ssh用途、安全性、身份认证以及配置……【转】

    SSH一般用途 提供shell,解决telnet不安全的传输 1.修改默认ssh默认端口 vi /etc/ssh/sshd_config 修改之后重启 >systemctl restart ss ...

  10. 苹果的浏览器safari无法识别 2016-1-1这样的日期,会返回Invalid Date

    1.很多时候我们遇到的日期是2016-1-1这样的,中间是带横线的,但是有时候我们需要转化为标准的时间,即使用new Date(time)这样的方法,这时在safari浏览器里面Invalid Dat ...