park Streaming--实战篇

摘要:

     Sprak Streaming属于Saprk API的扩展,支持实时数据流(live data streams)的可扩展,高吞吐(hight-throughput) 容错(fault-tolerant)的流处理。可以接受来自KafKa,Flume,ZeroMQ Kinesis  Twitter或TCP套接字的数据源,处理的结果数据可以存储到文件系统 数据库 现场dashboards等。
 
DStream编程模型
Dstream是Spark streaming中的高级抽象连续数据流,这个数据源可以从外部获得(如KafKa Flume等),也可以通过输入流获得,还可以通过在其他DStream上进行高级操作创建,DStream是通过一组时间序列上连续的RDD表示的,所以一个DStream可以看作是一个RDDs的序列。
 
DStream操作
1.套接字流:通过监听Socket端口来接收数据。
通过Scala编写程序来产生一系列的字符作为输入流:
GenerateChar:
object GenerateChar {
def generateContext(index : Int) : String = {
import scala.collection.mutable.ListBuffer
val charList = ListBuffer[Char]()
for(i <- 65 to 90)
charList += i.toChar
val charArray = charList.toArray
charArray(index).toString
}
def index = {
import java.util.Random
val rdm = new Random
rdm.nextInt(7)
}
def main(args: Array[String]) {
val listener = new ServerSocket(9998)
while(true){
val socket = listener.accept()
new Thread(){
override def run() = {
println("Got client connected from :"+ socket.getInetAddress)
val out = new PrintWriter(socket.getOutputStream,true)
while(true){
Thread.sleep(500)
val context = generateContext(index) //产生的字符是字母表的前七个随机字母
println(context)
out.write(context + '\n')
out.flush()
}
socket.close()
}
}.start()
}
}
}
ScoketStreaming:
object ScoketStreaming {
def main(args: Array[String]) {
//创建一个本地的StreamingContext,含2个工作线程
val conf = new SparkConf().setMaster("local[2]").setAppName("ScoketStreaming")
val sc = new StreamingContext(conf,Seconds(10)) //每隔10秒统计一次字符总数
//创建珍一个DStream,连接master:9998
val lines = sc.socketTextStream("master",9998)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x , 1)).reduceByKey(_ + _)
wordCounts.print()
sc.start() //开始计算
sc.awaitTermination() //通过手动终止计算,否则一直运行下去
}
}
运行结果:
GenerateChar产生的数据如下:
Got client connected from :/192.168.31.128
C
G
B
C
F
G
D
G
B
ScoketStreaming运行结果:
-------------------------------------------
Time: 1459426750000 ms
-------------------------------------------
(B,1)
(G,1)
(C,1)
-------------------------------------------
Time: 1459426760000 ms
-------------------------------------------
(B,5)
(F,3)
(D,4)
(G,3)
(C,3)
(E,1)
注意:如果是在本地运行的,setMaster的参数必须为local[n],n >1,官网解释:
   When running a Spark Streaming program locally, do not use “local” or “local[1]” as the master URL. Either ofthese means that only one thread 
will be used for running tasks locally. If you are using a input DStream based on a receiver (e.g. sockets, Kafka, Flume, etc.), then the single
thread will be used to run the receiver,leaving no thread for processing the received data. 当在本地运行Spark Streaming程序时,Master的URL不能设置为"local"或"local[1]",这两种设置都意味着你将会只有一个线程来运行作业,如果你的Input DStream基于一个接收器
(如Kafka,Flume等),那么只有一个线程来接收数据,而没有多余的线程来处理接收到的数据。
如果是在集群上运行,为Spark streaming应分配的核数应该在大于接收器的数据,否则同样只接收了数据而没有能力处理。
 
2.文件流:Spark Streaming通过监控文件系统的变化,若有新文件添加,则将它读入并作为数据流
需要注意的是:
  1.这些文件具有相同的格式
  2.这些文件通过原子移动或重命名文件的方式在dataDirectory创建
  3.一旦移动这些文件,就不能再进行修改,如果在文件中追加内容,这些追加的新数据也不会被读取。
FileStreaming:
object FileStreaming {
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local").setAppName("FileStreaming")
val sc = new StreamingContext(conf,Seconds(5))
val lines = sc.textFileStream("/home/hadoop/wordCount")
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x , 1)).reduceByKey(_ + _)
sc.start()
sc.awaitTermination()
}
}
当你在文件目录里添加文件时,Spark  Streaming就会自动帮你读入并计算 ,可以读取本地目录 HDFS和其他文件系统。
注意:文件流不需要运行接收器,所以不需要分配核数
 
3.RDD队列流:使用streamingContext.queueStream(queueOfRDD)创建基于RDD队列的DStream,用于调试Spark Streaming应用程序。
QueueStream:程序每隔1秒就创建一个RDD,Streaming每隔1秒就就对数据进行处理
object QueueStream {
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local[2]").setAppName("queueStream")
//每1秒对数据进行处理
val ssc = new StreamingContext(conf,Seconds(1))
//创建一个能够push到QueueInputDStream的RDDs队列
val rddQueue = new mutable.SynchronizedQueue[RDD[Int]]()
//基于一个RDD队列创建一个输入源
val inputStream = ssc.queueStream(rddQueue)
val mappedStream = inputStream.map(x => (x % 10,1))
val reduceStream = mappedStream.reduceByKey(_ + _)
reduceStream.print
ssc.start()
for(i <- 1 to 30){
rddQueue += ssc.sparkContext.makeRDD(1 to 100, 2) //创建RDD,并分配两个核数
Thread.sleep(1000)
}
ssc.stop()
}
}
输出
-------------------------------------------
Time: 1459595433000 ms //第1个输出
-------------------------------------------
(4,10)
(0,10)
(6,10)
(8,10)
(2,10)
(1,10)
(3,10)
(7,10)
(9,10)
(5,10)
............
............
-------------------------------------------
Time: 1459595463000 ms //第30个输出
-------------------------------------------
(4,10)
(0,10)
(6,10)
(8,10)
(2,10)
(1,10)
(3,10)
(7,10)
(9,10)
(5,10)
 
4.带状态的处理staefull
updateStateByKey操作:使用updateStateByKey操作的地是为了保留key的状态,并能持续的更新;使用此功能有如下两个步骤:
  1.定义状态,这个状态可以是任意的数据类型
  2.定义状态更新函数, 指定一个函数根据之前的状态来确定如何更新状态。
 
同样以wordCount作为例子,不同的是每一次的输出都会累计之前的wordCount
StateFull:
object StateFull {
def main(args: Array[String]) {
//定义状态更新函数
val updateFunc = (values: Seq[Int], state: Option[Int]) => {
val currentCount = values.foldLeft(0)(_ + _)
val previousCount = state.getOrElse(0)
Some(currentCount + previousCount)
}
val conf = new SparkConf().setMaster("local[2]").setAppName("stateFull")
val sc = new StreamingContext(conf, Seconds(5))
sc.checkpoint(".") //设置检查点,存储位置是当前目录,检查点具有容错机制
val lines = sc.socketTextStream("master", 9999)
val words = lines.flatMap(_.split(" "))
val wordDstream = words.map(x => (x, 1))
val stateDstream = wordDstream.updateStateByKey[Int](updateFunc)
stateDstream.print()
sc.start()
sc.awaitTermination()
}
}
先运行之前GenerateChar来产生字母,再运行StateFull,结果如下:
-------------------------------------------
Time: 1459597690000 ms
-------------------------------------------
(B,3)
(F,1)
(D,1)
(G,1)
(C,1)
-------------------------------------------
Time: 1459597700000 ms //会累计之前的值
-------------------------------------------
(B,5)
(F,3)
(D,4)
(G,4)
(A,2)
(E,5)
(C,4)

Spark Straming最大的优点在于处理数据采用的是粗粒度的处理方式(一次处理一小批的数据),这种特性也更方便地实现容错恢复机制,其DStream是在RDD上的高级

抽象,所以其极容易与RDD进行互操作。

2.spark-streaming实战的更多相关文章

  1. Spark入门实战系列--7.Spark Streaming(下)--实时流计算Spark Streaming实战

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .实例演示 1.1 流数据模拟器 1.1.1 流数据说明 在实例演示中模拟实际情况,需要源源 ...

  2. spark streaming 实战

    最近在学习spark的相关知识, 重点在看spark streaming 和spark mllib相关的内容. 关于spark的配置: http://www.powerxing.com/spark-q ...

  3. Spark Streaming实战

    1.Storm 和 SparkStreaming区别 Storm                      纯实时的流式处理,来一条数据就立即进行处理 SparkStreaming 微批处理,每次处理 ...

  4. 倾情大奉送--Spark入门实战系列

    这一两年Spark技术很火,自己也凑热闹,反复的试验.研究,有痛苦万分也有欣喜若狂,抽空把这些整理成文章共享给大家.这个系列基本上围绕了Spark生态圈进行介绍,从Spark的简介.编译.部署,再到编 ...

  5. 《大数据Spark企业级实战 》

    基本信息 作者: Spark亚太研究院   王家林 丛书名:决胜大数据时代Spark全系列书籍 出版社:电子工业出版社 ISBN:9787121247446 上架时间:2015-1-6 出版日期:20 ...

  6. Spark入门实战系列

    转自:http://www.cnblogs.com/shishanyuan/p/4699644.html 这一两年Spark技术很火,自己也凑热闹,反复的试验.研究,有痛苦万分也有欣喜若狂,抽空把这些 ...

  7. 日志=>flume=>kafka=>spark streaming=>hbase

    日志=>flume=>kafka=>spark streaming=>hbase 日志部分 #coding=UTF-8 import random import time ur ...

  8. Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spa ...

  9. 【慕课网实战】Spark Streaming实时流处理项目实战笔记二十一之铭文升级版

    铭文一级: DataV功能说明1)点击量分省排名/运营商访问占比 Spark SQL项目实战课程: 通过IP就能解析到省份.城市.运营商 2)浏览器访问占比/操作系统占比 Hadoop项目:userA ...

  10. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十八之铭文升级版

    铭文一级: 功能二:功能一+从搜索引擎引流过来的 HBase表设计create 'imooc_course_search_clickcount','info'rowkey设计:也是根据我们的业务需求来 ...

随机推荐

  1. html基础1(环境准备、标签)

    学习目的 1,能改前端的模板 2,自己装修页面 3.前后端交互多个技术 4.能操作网页元素 5.能和前端开发人员沟通 开发工具: pycharm/webStorm EditPlus(适合初学) sub ...

  2. 关于cookie你不知道的

    cookie虽然在持久保存客户端数据提供了方便,分担了服务器存储的负担,但还是有很多局限性的.第一:每个特定的域名下最多生成20个cookie1.IE6或更低版本最多20个cookie2.IE7和之后 ...

  3. offsetTop/offsetHeight scrollTop/scrollHeight 的区别

    offsetTop/offsetHeight   scrollTop/scrollHeight  这几个属性困扰了我N久,这次一定要搞定. 假设 obj 为某个 HTML 控件. obj.offset ...

  4. 20165226 2017-2018-4 《Java程序设计》第8周学习总结

    20165226 2017-2018-4 <Java程序设计>第8周学习总结 教材学习内容总结 第十二章 创建线程的方式有三种,分别是: - 继承Thread类创建线程,程序中如果想要获取 ...

  5. laravel 环境自编译过程

    [原创] 看到此文的朋友看完后也许会失望,但我尽最大努力不让搜友们失望,以下是自己操作的笔记用以整理提高 虽然 laravel 官方已给出了安装 laravel 框架所需的环境盒子 使用Vagrant ...

  6. [实践]使用JarJar优雅的发布依赖包

    [实践]使用JarJar优雅的发布依赖包 打包工具: Jar Jar Links是一个Java类库重新打包工具. 可以帮助你将其它用到的java库打包并嵌入到你自己的项目jar包中.这样做的原因有: ...

  7. 【洛谷】P1892 团伙(并查集)+ 求助

    题目描述 1920年的芝加哥,出现了一群强盗.如果两个强盗遇上了,那么他们要么是朋友,要么是敌人.而且有一点是肯定的,就是: 我朋友的朋友是我的朋友: 我敌人的敌人也是我的朋友. 两个强盗是同一团伙的 ...

  8. wget 技巧

    最近用到一个命令wget,有一个技巧分享一下. [root@py ~]# wget -m -k http://www.example.com 可以将示例网站整个打包,作为本地镜像.

  9. 分类和逻辑回归(Classification and logistic regression)

    分类问题和线性回归问题问题很像,只是在分类问题中,我们预测的y值包含在一个小的离散数据集里.首先,认识一下二元分类(binary classification),在二元分类中,y的取值只能是0和1.例 ...

  10. redis 创建集群时 出现的错误解决方式

    1. 创建集群时报以下错误 (1)错误1 ./redis-trib.rb create --replicas 1 XXXXXX:5301 XXXXXX:5302 XXXXXX:5303 XXXXXX: ...